cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A098600 a(n) = Fibonacci(n-1) + Fibonacci(n+1) - (-1)^n.

Original entry on oeis.org

1, 2, 2, 5, 6, 12, 17, 30, 46, 77, 122, 200, 321, 522, 842, 1365, 2206, 3572, 5777, 9350, 15126, 24477, 39602, 64080, 103681, 167762, 271442, 439205, 710646, 1149852, 1860497, 3010350, 4870846, 7881197, 12752042, 20633240, 33385281, 54018522
Offset: 0

Views

Author

Paul Barry, Sep 17 2004

Keywords

Comments

Row sums of A098599.

Crossrefs

Programs

  • Magma
    [Fibonacci(n-1) + Fibonacci(n+1) - (-1)^n: n in [0..50]]; // Vincenzo Librandi, Aug 31 2014
    
  • Mathematica
    Table[-(-1)^n + LucasL[n], {n, 0, 39}] (* Alonso del Arte, Aug 30 2014 *)
    Table[Fibonacci[n - 1] + Fibonacci[n + 1] - (-1)^n, {n, 0, 40}] (* Vincenzo Librandi, Aug 31 2014 *)
    CoefficientList[ Series[-(1 + 2x)/(-1 + 2x^2 + x^3), {x, 0, 40}], x] (* or *)
    LinearRecurrence[{0, 2, 1}, {1, 2, 2}, 40] (* Robert G. Wilson v, Mar 09 2018 *)
  • PARI
    a(n)=fibonacci(n-1) + fibonacci(n+1) - (-1)^n; \\ Joerg Arndt, Oct 18 2014
    
  • PARI
    Vec((1+2*x)/((1+x)*(1-x-x^2)) + O(x^30)) \\ Colin Barker, Jun 03 2016
    
  • SageMath
    [lucas_number2(n,1,-1) -(-1)^n for n in range(51)] # G. C. Greubel, Mar 26 2024

Formula

G.f.: (1+2*x) / ((1+x)*(1-x-x^2)).
a(n) = Sum_{k = 0..n} binomial(k, n-k) + binomial(k-1, n-k-1).
a(n) = A020878(n) - 1 = A001350(n) + 1.
a(n) = Lucas(n) - (-1)^n. - Paul Barry, Dec 01 2004
a(n) = A181716(n+1). - Richard R. Forberg, Aug 30 2014
a(n) = [x^n] ( (1 + x + sqrt(1 + 6*x + 5*x^2))/2 )^n. exp( Sum_{n >= 1} a(n)*x^n/n ) = Sum_{n >= 0} Fibonacci(n+2)*x^n. Cf. A182143. - Peter Bala, Jun 29 2015
From Colin Barker, Jun 03 2016: (Start)
a(n) = (-(-1)^n + ((1/2)*(1-sqrt(5)))^n + ((1/2)*(1+sqrt(5)))^n).
a(n) = 2*a(n-2) + a(n-3) for n > 2. (End)
E.g.f.: (2*exp(3*x/2)*cosh(sqrt(5)*x/2) - 1)*exp(-x). - Ilya Gutkovskiy, Jun 03 2016
a(n) = A014217(n) + A000035(n). - Paul Curtz, Jul 27 2023

A162483 a(n) is the number of perfect matchings of an edge-labeled 2 X (2n+1) Mobius grid graph.

Original entry on oeis.org

3, 6, 13, 31, 78, 201, 523, 1366, 3573, 9351, 24478, 64081, 167763, 439206, 1149853, 3010351, 7881198, 20633241, 54018523, 141422326, 370248453, 969323031, 2537720638, 6643838881, 17393796003, 45537549126, 119218851373, 312119004991, 817138163598
Offset: 0

Views

Author

Sarah-Marie Belcastro, Jul 04 2009

Keywords

Comments

This is a specialization for m=2 of a general formula for the number of perfect matchings of an edge-labeled m X (2n+1) Mobius grid graph.

Examples

			G.f. = 3 + 6*x + 13*x^2 + 31*x^3 + 78*x^4 + 201*x^5 + 523*x^6 + 1366*x^7 + ...
a(0) = 3 because this is the number of perfect matchings of a 2 X 1 Mobius grid graph (one for each of the three multiple edges).
		

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((3-6*x+x^2)/((1-x)*(x^2-3*x+1)))); // G. C. Greubel, Sep 22 2018
  • Mathematica
    Table[Re[(1 - I) (2*I + Fibonacci[2 + 2*n] + 1/2 (-Fibonacci[1 + 2*n] + LucasL[1 + 2*n]))], {n, 0, 30}]
    Table[LucasL[2*n + 1] + 2, {n, 0, 30}] (* Clark Kimberling, Oct 26 2012 *)
    LinearRecurrence[{4, -4, 1}, {3, 6, 13}, 30] (* or *) CoefficientList[Series[(-3 + 6 x - x^2)/(-1 + 4 x - 4 x^2 + x^3), {x, 0, 30}], x] (* Stefano Spezia, Sep 23 2018 *)
  • PARI
    {a(n) = 2 + fibonacci(2*n) + fibonacci(2*n+2)}; /* Michael Somos, Nov 03 2016 */
    

Formula

a(n) = Real((1-I) * ((L(2*n+1) - F(2*n+1))/2 + F(2*n+2) + 2*I)).
From R. J. Mathar, Aug 08 2009: (Start)
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3).
G.f.: (3-6*x+x^2)/((1-x)*(x^2-3*x+1)). (End)
a(n+1)-a(n) = A005248(n+1). - R. J. Mathar, Dec 18 2010
a(n) = A000032(2n+1)+2. - Clark Kimberling, Oct 26 2012
a(n) = 2^(-1-n)*(2^(2+n)-(3-sqrt(5))^n*(-1+sqrt(5))+(1+sqrt(5))*(3+sqrt(5))^n). - Colin Barker, Nov 03 2016
a(n) = 2 + L(2*n+1), A256233(n) = -a(-n-1) for all n in Z. - Michael Somos, Nov 03 2016

A263200 Number of perfect matchings on a Möbius strip of width 3 and length 2n.

Original entry on oeis.org

28, 104, 388, 1448, 5404, 20168, 75268, 280904, 1048348, 3912488, 14601604, 54493928, 203374108, 759002504, 2832635908, 10571541128, 39453528604, 147242573288, 549516764548, 2050824484904, 7653781175068, 28564300215368, 106603419686404, 397849378530248
Offset: 2

Views

Author

Sergey Perepechko, Oct 12 2015

Keywords

Comments

This sequence obeys the same recurrence relation as A001835.

Crossrefs

Programs

  • Magma
    I:=[28,104]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 12 2015
  • Mathematica
    CoefficientList[Series[4 (7 - 2 x)/(1 - 4 x + x^2), {x, 0, 33}], x] (* Vincenzo Librandi, Oct 12 2015 *)
  • PARI
    Vec(4*x^2*(7-2*x)/(1-4*x+x^2) + O(x^30)) \\ Altug Alkan, Oct 12 2015
    

Formula

a(n) = Product_{k=1..n} (10 + 2*cos(Pi*(4*k-1)/n) - 12*cos(1/2*Pi*(4*k-1)/n)).
G.f.: 4*x^2*(7-2*x)/(1-4*x+x^2).
From Colin Barker, Oct 12 2015: (Start)
a(n) = 2*((2-sqrt(3))^n + (2+sqrt(3))^n).
a(n) = 4*a(n-1) - a(n-2). (End)
a(n) = 4*A001075(n) for n >= 2. - Philippe Deléham, Mar 03 2023

A263201 Number of perfect matchings on a Möbius strip of width 4 and length n.

Original entry on oeis.org

11, 37, 71, 252, 539, 1813, 4271, 13519, 34276, 103803, 276119, 813417, 2226851, 6455052, 17965151, 51604017, 144948419, 414258603, 1169523076, 3333192319, 9436433171, 26853404413, 76139155439, 216490730652, 614339685971, 1745997031837, 4956888901511
Offset: 2

Views

Author

Sergey Perepechko, Oct 12 2015

Keywords

Comments

This sequence obeys the same recurrence relation as A252054.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(11 + 26 x - 109 x^2 - 223 x^3 + 294 x^4 + 620 x^5 - 306 x^6 - 764 x^7 + 100 x^8 + 414 x^9 + 5 x^10 - 92 x^11 - 3 x^12 + 7 x^13)/((1 - x) (1 + x) (1 + x - 3 x^2 - x^3 + x^4) (1 - x - 3 x^2 + x^3 + x^4) (1 - x - 5 x^2 - x^3 + x^4)), {x, 0, 33}], x] (* Vincenzo Librandi, Oct 12 2015 *)
  • PARI
    Vec(z^2*(11 + 26*z - 109*z^2 - 223*z^3 + 294*z^4 + 620*z^5 - 306*z^6 -764*z^7 + 100*z^8 + 414*z^9 + 5*z^10 - 92*z^11 - 3*z^12 + 7*z^13)/((1 - z)*(1 + z)*(1 + z - 3*z^2 - z^3 + z^4)*(1 - z - 3*z^2 + z^3 + z^4)*(1 - z - 5*z^2 - z^3 + z^4)) + O(z^50)) \\ Altug Alkan, Oct 12 2015

Formula

G.f.: z^2*(11 + 26*z - 109*z^2 - 223*z^3 + 294*z^4 + 620*z^5 - 306*z^6 -764*z^7 + 100*z^8 + 414*z^9 + 5*z^10 - 92*z^11 - 3*z^12 + 7*z^13)/((1 - z)*(1 + z)*(1 + z - 3*z^2 - z^3 + z^4)*(1 - z - 3*z^2 + z^3 + z^4)*(1 - z - 5*z^2 - z^3 + z^4)).

A290470 Number of minimal edge covers in the n-Moebius ladder.

Original entry on oeis.org

3, 7, 15, 59, 143, 367, 1039, 2755, 7395, 20007, 53727, 144635, 389535, 1048159, 2821535, 7595267, 20443523, 55029319, 148125295, 398712379, 1073232175, 2888862159, 7776059055, 20931132355, 56341155043, 151655701607, 408217663167, 1098815603707, 2957725352255
Offset: 1

Views

Author

Eric W. Weisstein, Aug 03 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2 Cos[n Pi/2] - RootSum[-1 + # + #^2 + #^3 &, #^n &] +
      RootSum[1 - 2 #^2 - 2 #^3 + #^4 &, #^n &], {n, 20}]
    LinearRecurrence[{1, 2, 6, 2, 2, -2, -2, -1, 1}, {3, 7, 15, 59, 143, 367, 1039, 2755, 7395}, 20]
    CoefficientList[Series[-(((1 + x) (-3 - x - x^2 + x^3) (-1 - 4 x^3 + 3 x^4))/((1 + x^2) (-1 - x - x^2 + x^3) (1 - 2 x - 2 x^2 + x^4))), {x, 0, 20}], x]
  • PARI
    Vec((1 + x)*(1 + 4*x^3 - 3*x^4)*(3 + x + x^2 - x^3)/((1 + x^2)*(1 + x + x^2 - x^3)*(1 - 2*x - 2*x^2 + x^4)) + O(x^30)) \\ Andrew Howroyd, Aug 04 2017

Formula

From Andrew Howroyd, Aug 04 2017: (Start)
a(n) = a(n-1) + 2*a(n-2) + 6*a(n-3) + 2*a(n-4) + 2*a(n-5) - 2*a(n-6) - 2*a(n-7) - a(n-8) + a(n-9) for n > 9.
G.f.: x*(1 + x)*(1 + 4*x^3 - 3*x^4)*(3 + x + x^2 - x^3)/((1 + x^2)*(1 + x + x^2 - x^3)*(1 - 2*x - 2*x^2 + x^4)).
(End)

Extensions

a(1)-a(2) and terms a(9) and beyond from Andrew Howroyd, Aug 04 2017
Showing 1-5 of 5 results.