A020897 Sum of two nonzero rational cubes.
2, 6, 7, 9, 12, 13, 15, 16, 17, 19, 20, 22, 26, 28, 30, 31, 33, 34, 35, 37, 42, 43, 48, 49, 50, 51, 53, 54, 56, 58, 61, 62, 63, 65, 67, 68, 69, 70, 71, 72, 75, 78, 79, 84, 85, 86, 87, 89, 90, 91, 92, 94, 96, 97, 98, 103, 104, 105, 106, 107, 110, 114, 115, 117, 120
Offset: 1
Examples
6*21^3 = 37^3 + 17^3, 7*3^3 = 5^3 + 4^3, 9*1^3 = 2^3 + 1^3, 12*39^3 = 89^3 + 19^3, 13*3^3 = 7^3 + 2^3, 15*294^3 = 683^3 + 397^3, ... - _Michael Somos_, Nov 18 2021 31*42^3 = 137^3 + (-65)^3, 67*1323^3 = 5353^3 + 1208^3. - _Michael Somos_, Feb 12 2022
Links
- S. W. Dolan, On expressing numbers as the sum of two cubes, The Mathematical Gazette, Vol. 66, No. 436 (Mar., 1982), pp. 31-38. See table of solutions on page 32. - _Michael Somos_, Nov 18 2021
- Steven R. Finch, On a Generalized Fermat-Wiles Equation [broken link]
- Steven R. Finch, On a Generalized Fermat-Wiles Equation [From the Wayback Machine]
- Ernst S. Selmer, The diophantine equation ax^3 + by^3 + cz^3 = 0, Acta Math. 85 (1951), pp. 203-362.
Crossrefs
Subsequence of A159843.
Programs
-
Mathematica
(* A naive program with a few pre-computed terms *) nmax = 120; xmax = 2000; CubeFreePart[n_] := Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 3]} & /@ FactorInteger[n]); nn = Reap[Do[n = CubeFreePart[x*y*(x+y)]; If[1 < n <= nmax, Sow[n]], {x, 1, xmax}, {y, x, xmax}]][[2, 1]] // Union; A020897 = Select[ Union[nn, nn*2^3, nn*3^3, nn*4^3, {17, 31, 53, 67, 71, 79, 89, 94, 97, 103, 107}], # <= nmax &] (* Jean-François Alcover, Apr 02 2012 *)
Extensions
Offset corrected by Arkadiusz Wesolowski, Aug 15 2013
Comments