A021010 Triangle of coefficients of Laguerre polynomials L_n(x) (powers of x in decreasing order).
1, -1, 1, 1, -4, 2, -1, 9, -18, 6, 1, -16, 72, -96, 24, -1, 25, -200, 600, -600, 120, 1, -36, 450, -2400, 5400, -4320, 720, -1, 49, -882, 7350, -29400, 52920, -35280, 5040, 1, -64, 1568, -18816, 117600, -376320, 564480, -322560, 40320, -1, 81, -2592, 42336, -381024, 1905120, -5080320, 6531840, -3265920, 362880
Offset: 0
Examples
1; -1, 1; 1, -4, 2; -1, 9, -18, 6; 1, -16, 72, -96, 24; ...
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.
Links
- T. D. Noe, Rows n = 0..50 of triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- J. Fernando Barbero G., Jesús Salas, Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
- C. Lanczos, Applied Analysis (Annotated scans of selected pages) See page 519.
- Eric Weisstein's World of Mathematics, Rook Polynomial
- Kin Yip Wong, A Dynamic Coupling Model of Optical Conductivity in Mixed-Valence Systems, arXiv:2410.13144 [cond-mat.mtrl-sci], 2024. See p. 12.
- Index entries for sequences related to Laguerre polynomials
Programs
-
Magma
[[(-1)^(n-k)*Factorial(k)*Binomial(n, k)^2: k in [0..n]]: n in [0..10]]; // G. C. Greubel, Feb 06 2018
-
Maple
T:=(n,k)->(-1)^(n-k)*k!*binomial(n,k)^2: for n from 0 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form # Emeric Deutsch, Dec 25 2004
-
Mathematica
Flatten[ Table[ Reverse[ CoefficientList[n!*LaguerreL[n, x], x]], {n, 0, 9}]] (* Jean-François Alcover, Nov 24 2011 *)
-
PARI
LaguerreL(n,v='x) = { my(x='x+O('x^(n+1)), t='t); subst(polcoeff(exp(-x*t/(1-x))/(1-x), n), 't, v); }; concat(apply(n->Vec(n!*LaguerreL(n)), [0..9])) \\ Gheorghe Coserea, Oct 26 2017
-
PARI
row(n) = Vec(n!*pollaguerre(n)); \\ Michel Marcus, Feb 06 2021
Formula
T(n, k) = (-1)^(n-k)*k!*binomial(n, k)^2. - Emeric Deutsch, Dec 25 2004
Comments