A021012 Triangle of coefficients in expansion of x^n in terms of Laguerre polynomials L_n(x).
1, 1, -1, 2, -4, 2, 6, -18, 18, -6, 24, -96, 144, -96, 24, 120, -600, 1200, -1200, 600, -120, 720, -4320, 10800, -14400, 10800, -4320, 720, 5040, -35280, 105840, -176400, 176400, -105840, 35280, -5040, 40320, -322560, 1128960, -2257920, 2822400, -2257920, 1128960, -322560, 40320, 362880, -3265920
Offset: 0
Examples
Triangle begins: 1; 1, -1; 2, -4, 2; 6, -18, 18, -6; 24, -96, 144, -96, 24; ... x^3 = 6*LaguerreL(0,x) - 18*LaguerreL(1,x) + 18*LaguerreL(2,x) - 6*LaguerreL(3,x).
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Index entries for sequences related to Laguerre polynomials
Crossrefs
Programs
-
Magma
[[(-1)^k*Factorial(n)*Binomial(n,k): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Feb 06 2018
-
Mathematica
row[n_] := Table[ a[n, k], {k, 0, n}] /. SolveAlways[ x^n == Sum[ a[n, k]*LaguerreL[k, x], {k, 0, n}], x] // First; (* or, after Vladeta Jovovic: *) row[n_] := Table[(-1)^k*n!*Binomial[n, k], {k, 0, n}]; Table[ row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Oct 05 2012 *)
-
PARI
for(n=0,10, for(k=0,n, print1((-1)^k*n!*binomial(n,k), ", "))) \\ G. C. Greubel, Feb 06 2018
Formula
T(n, k) = (-1)^k*n!*binomial(n, k). - Vladeta Jovovic, May 11 2003
Sum_{k>=0} T(n, k)*T(m, k) = (n+m)!. - Philippe Deléham, Feb 14 2005
A136572*PS, where PS is a triangle with PS[n,k] = (-1)^k*A007318[n,k]. PS = 1/PS. - Gerald McGarvey, Aug 20 2009
Extensions
More terms from Vladeta Jovovic, May 11 2003
Comments