cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A136572 Triangle read by rows: row n consists of n zeros followed by n!.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 0, 6, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 120, 0, 0, 0, 0, 0, 0, 720, 0, 0, 0, 0, 0, 0, 0, 5040, 0, 0, 0, 0, 0, 0, 0, 0, 40320, 0, 0, 0, 0, 0, 0, 0, 0, 0, 362880, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3628800, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 39916800
Offset: 0

Views

Author

Gary W. Adamson, Jan 07 2008

Keywords

Comments

Examples

			First few rows of the triangle:
  1;
  0, 1;
  0, 0, 2;
  0, 0, 0, 6;
  0, 0, 0, 0, 24;
  0, 0, 0, 0,  0, 120;
  ...
		

Crossrefs

Programs

  • Haskell
    a136572 n k = a136572_tabl !! n !! k
    a136572_row n = a136572_tabl !! n
    a136572_tabl = map fst $ iterate f ([1], 1) where
       f (row, i) = (0 : map (* i) row, i + 1)
    -- Reinhard Zumkeller, Nov 18 2012
  • Mathematica
    Table[PadLeft[{n!},n+1,0],{n,0,20}]//Flatten (* Harvey P. Dale, Oct 22 2016 *)

Formula

Triangle, n zeros followed by n! T(n,k): n! * 0^(n-k), 0 <= k <= n.
As an infinite lower triangular matrix, A000142 (1, 1, 2, 6, 24, 120, ...) in the main diagonal and the rest zeros.

A001805 a(n) = n! * binomial(n,3).

Original entry on oeis.org

6, 96, 1200, 14400, 176400, 2257920, 30481920, 435456000, 6586272000, 105380352000, 1780927948800, 31732897996800, 594991837440000, 11716762337280000, 241867451105280000, 5224336943874048000, 117874102296158208000, 2773508289321369600000
Offset: 3

Views

Author

Keywords

Comments

Coefficients of Laguerre polynomials.

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Essentially a column of triangle A021012.

Programs

  • Magma
    [Factorial(n)*Binomial(n,3): n in [3..30]]; // G. C. Greubel, May 17 2018
  • Maple
    G(x):=x^3/(1-x)^4: f[0]:=G(x): for n from 1 to 18 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=3..18); # Zerinvary Lajos, Apr 01 2009
  • Mathematica
    Table[n! Binomial[n,3], {n,3,30}] (* Harvey P. Dale, Feb 23 2011 *)
  • PARI
    for(n=3, 30, print1(n!*binomial(n,3), ", ")) \\ G. C. Greubel, May 17 2018
    

Formula

E.g.f.: x^3/(1-x)^4. - Geoffrey Critzer, Aug 19 2012

Extensions

More terms from Ralf Stephan, Jan 09 2004

A196347 Triangle T(n, k) read by rows, T(n, k) = n!*binomial(n, k).

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 6, 18, 18, 6, 24, 96, 144, 96, 24, 120, 600, 1200, 1200, 600, 120, 720, 4320, 10800, 14400, 10800, 4320, 720, 5040, 35280, 105840, 176400, 176400, 105840, 35280, 5040, 40320, 322560, 1128960, 2257920, 2822400, 2257920, 1128960, 322560, 40320
Offset: 0

Views

Author

Philippe Deléham, Oct 28 2011

Keywords

Comments

Unsigned version of A021012.
Equal to A136572*A007318.

Examples

			Triangle begins:
    1;
    1,   1;
    2,   4,    2;
    6,  18,   18,    6;
   24,  96,  144,   96,  24;
  120, 600, 1200, 1200, 600, 120;
  ...
		

Crossrefs

Programs

  • Magma
    /* As triangle */ [[Factorial(n)*Binomial(n, k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 28 2015
  • Mathematica
    Table[n!*Binomial[n, j], {n, 0, 30}, {j, 0, n}] (* G. C. Greubel, Sep 27 2015 *)
  • Sage
    factorial(n)*binomial(n,k) # Danny Rorabaugh, Sep 27 2015
    

Formula

T(n,k) is given by (1,1,2,2,3,3,4,4,5,5,6,6,...) DELTA (1,1,2,2,3,3,4,4,5,5,6,6, ...) where DELTA is the operator defined in A084938.
Sum_{k>=0} T(m,k)*T(n,k) = (m+n)!.
T(2n,n) = A122747(n).
Sum_{k>=0} T(n,k)^2 = A010050(n) = (2n)!.
Sum_{k>=0} T(n,k)*x^k = A000007(n), A000142(n), A000165(n), A032031(n), A047053(n), A052562(n), A047058(n), A051188(n), A051189(n), A051232(n), A051262(n), A196258(n), A145448(n) for x = -1,0,1,2,3,4,5,6,7,8,9,10,11 respectively.
The row polynomials have the form (x + 1) o (x + 2) o ... o (x + n), where o denotes the black diamond multiplication operator of Dukes and White. See example E10 in the Bala link. - Peter Bala, Jan 18 2018

Extensions

Name exchanged with a formula by Peter Luschny, Feb 01 2015

A001806 a(n) = n! * binomial(n,4).

Original entry on oeis.org

24, 600, 10800, 176400, 2822400, 45722880, 762048000, 13172544000, 237105792000, 4452319872000, 87265469491200, 1784975512320000, 38079477596160000, 846536078868480000, 19591263539527680000, 471496409184632832000, 11787410229615820800000
Offset: 4

Views

Author

Keywords

Comments

Coefficients of Laguerre polynomials.

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A column of triangle A021012.

Programs

  • Magma
    [Factorial(n)*Binomial(n,4): n in [4..30]]; // G. C. Greubel, May 17 2018
  • Maple
    G(x):=x^4/(1-x)^5: f[0]:=G(x): for n from 1 to 18 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=4..18); # Zerinvary Lajos, Apr 01 2009
  • Mathematica
    Table[n! Binomial[n, 4], {n, 4, 20}] (* T. D. Noe, Aug 10 2012 *)
  • PARI
    for(n=4,30, print1(n!*binomial(n,4), ", ")) \\ G. C. Greubel, May 17 2018
    

Formula

E.g.f.: x^4/(1-x)^5. - Geoffrey Critzer, Aug 19 2012

Extensions

More terms from Ralf Stephan, Jan 09 2004

A001807 a(n) = n! * binomial(n,5).

Original entry on oeis.org

120, 4320, 105840, 2257920, 45722880, 914457600, 18441561600, 379369267200, 8014175769600, 174530938982400, 3926946127104000, 91390746230784000, 2200993805058048000, 54855537910677504000, 1414489227553898496000, 37719712734770626560000
Offset: 5

Views

Author

Keywords

Comments

Coefficients of Laguerre polynomials.

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Essentially a column of triangle A021012.

Programs

  • Magma
    [Factorial(n)*Binomial(n,5): n in [5..35]]; // G. C. Greubel, May 17 2018
  • Maple
    G(x):=x^5/(1-x)^6: f[0]:=G(x): for n from 1 to 18 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=5..18); # Zerinvary Lajos, Apr 01 2009
  • Mathematica
    Table[n! Binomial[n, 5], {n, 5, 20}] (* T. D. Noe, Aug 10 2012 *)
  • PARI
    for(n=5, 35, print1(n!*binomial(n,5), ", ")) \\ G. C. Greubel, May 17 2018
    
  • Sage
    [binomial(n,5)*factorial (n) for n in range(5, 19)] # Zerinvary Lajos, Jul 07 2009
    

Formula

E.g.f.: x^5/(1-x)^6. - Geoffrey Critzer, Aug 19 2012

Extensions

More terms from Ralf Stephan, Jan 09 2004

A174690 Triangle T(n, k) = n!*binomial(n, k) - n! + 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 13, 13, 1, 1, 73, 121, 73, 1, 1, 481, 1081, 1081, 481, 1, 1, 3601, 10081, 13681, 10081, 3601, 1, 1, 30241, 100801, 171361, 171361, 100801, 30241, 1, 1, 282241, 1088641, 2217601, 2782081, 2217601, 1088641, 282241, 1, 1, 2903041, 12700801, 30119041, 45360001, 45360001, 30119041, 12700801, 2903041, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 27 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,      1;
  1,      3,       1;
  1,     13,      13,       1;
  1,     73,     121,      73,       1;
  1,    481,    1081,    1081,     481,       1;
  1,   3601,   10081,   13681,   10081,    3601,       1;
  1,  30241,  100801,  171361,  171361,  100801,   30241,      1;
  1, 282241, 1088641, 2217601, 2782081, 2217601, 1088641, 282241, 1;
		

Crossrefs

Programs

  • Magma
    [Factorial(n)*(Binomial(n,k) -1) + 1: k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 09 2021
  • Mathematica
    T[n_, k_]:= n!*Binomial[n, k] - n! + 1;
    Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
  • Sage
    flatten([[factorial(n)*(binomial(n,k) -1) + 1 for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 09 2021
    

Formula

T(n, k) = n!*binomial(n, k) - n! + 1.
From G. C. Greubel, Feb 09 2021: (Start)
T(n, k) = A196347(n, k) - n! + 1 = (-1)^k * A021012(n, k) - n! + 1.
Sum_{k=0..n} T(n, k) = 2^n * n! - (n+1)! + (n+1) = A000165(n) - (n+1)! + (n+1). (End)

Extensions

Edited by G. C. Greubel, Feb 09 2021

A253666 Triangle read by rows, T(n,k) = C(n,k)*n!/(floor(n/2)!)^2, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 6, 18, 18, 6, 6, 24, 36, 24, 6, 30, 150, 300, 300, 150, 30, 20, 120, 300, 400, 300, 120, 20, 140, 980, 2940, 4900, 4900, 2940, 980, 140, 70, 560, 1960, 3920, 4900, 3920, 1960, 560, 70, 630, 5670, 22680, 52920, 79380, 79380, 52920, 22680, 5670, 630
Offset: 0

Views

Author

Peter Luschny, Feb 01 2015

Keywords

Examples

			Triangle begins:
.   1;
.   1,    1;
.   2,    4,     2;
.   6,   18,    18,     6;
.   6,   24,    36,    24,     6;
.  30,  150,   300,   300,   150,    30;
.  20,  120,   300,   400,   300,   120,    20;
. 140,  980,  2940,  4900,  4900,  2940,   980,   140;
.  70,  560,  1960,  3920,  4900,  3920,  1960,   560,   70;
. 630, 5670, 22680, 52920, 79380, 79380, 52920, 22680, 5670, 630; etc.
		

Crossrefs

Row sums are A253665.

Programs

  • Magma
    [Binomial(n,k)*Factorial(n)/Factorial(Floor(n/2))^2: k in [0..n], n in [0..10]]; // Bruno Berselli, Feb 02 2015
  • Maple
    T := (n,k) -> n!*binomial(n,k)/(iquo(n,2)!)^2:
    seq(print(seq(T(n,k), k=0..n)), n=0..9);

Formula

T(n,k) = C(n,k)*A056040(k).
T(2*n,n) = C(2*n,n)^2.

A360283 a(n) = lcm({n! * binomial(n, k) for k = 0..n}).

Original entry on oeis.org

1, 1, 4, 18, 288, 1200, 43200, 529200, 11289600, 91445760, 9144576000, 92207808000, 13277924352000, 160283515392000, 2094371267788800, 58904191906560000, 15079473128079360000, 242109318556385280000, 78443419212268830720000, 1415903716781452394496000
Offset: 0

Views

Author

Peter Luschny, Feb 14 2023

Keywords

Crossrefs

Programs

  • Maple
    a := n -> ilcm(seq(n!*binomial(n, k), k=0..n)):
    seq(a(n), n = 0..19);
  • Python
    from math import factorial, lcm
    def A360283(n): return factorial(n)*lcm(*(i for i in range(1,n+2)))//(n+1) # Chai Wah Wu, Feb 15 2023

Formula

a(n) = n! * lcm({k for k = 1..n+1}) / (n+1) = n! * LCM(n + 1) / (n + 1).
a(n) / a(n-1) = n^2 if and only if n + 1 is prime, for n >= 1.
Showing 1-8 of 8 results.