A021016 Decimal expansion of 1/12.
0, 8, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 0
Examples
0.083333333333333333333333333333333333333333333333333333333333333333...
References
- Bruce C. Berndt, Ramanujan's Notebooks: Part 1, Springer-Verlag, 1985, pp. 135-136
- Terry Gannon, Moonshine Beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics, Cambridge University Press, 2010, p. 140.
- L. B. W. Jolley, Summation of series, Dover Publications Inc. (New York), 1961, p. 40 (series n. 209) and p. 44 (series n. 239).
Links
- Martin Gardner, The Five Platonic Solids, Mathematical Puzzles & Diversions.
- Srinivasa Ramanujan, Question 463, Journal of the Indian Mathematical Society, Vol. 5 (1913), p. 120.
- Srinivasa Ramanujan, Another way of finding the constant, Notebook 1, 1919.
- Samuel S. Wagstaff, Jr., The Schnirelmann Density of the Sums of Three Squares, Proc. Amer. Math. Soc. 52 (1975), 1-7.
- Wikipedia, 1 + 2 + 3 + 4 + ....
- Index entries for linear recurrences with constant coefficients, signature (1).
Programs
-
Mathematica
RealDigits[1/12, 10, 100, -1][[1]] (* Bruno Berselli, Mar 21 2014 *)
-
PARI
1/12. \\ Michel Marcus, Mar 11 2018
Formula
Equals 1/(1*3*5) + 1/(3*5*7) + 1/(5*7*9) + 1/(7*9*11) + ... = Sum_{i >= 0} 1/((2*i+1)*(2*i+3)*(2*i+5)), see Jolley in References. - Bruno Berselli, Mar 21 2014
Equals 1/(2*3*4) + 1/(3*4*5) + 1/(4*5*6) + 1/(5*6*7) + ... = Sum_{i > 0} 1/((i+1)*(i+2)*(i+3)). See Jolley in References, p. 48 (sum obtained from the series 268, case t = 2). - Bruno Berselli, Mar 29 2014
Equals 2*Pi*Integral_{z=-oo..oo} (z/(e^(-Pi*z) + e^(Pi*z)))^2. - Peter Luschny, Jul 17 2020
Equals lim_{x->oo} (P(x) - (1 - t(x))/(1 + t(x)))^(1/x) = lim_{x->oo} (t(x) - (1 - P(x))/(1 + P(x)))^(1/x) by the inversion, where P(x) is the prime zeta function of x and t(x) = zeta(2x)/zeta(x)^2, with zeta(x) being the Riemann zeta function of x. - Thomas Ordowski, Oct 28 2024
Equals Integral_{x>=0} 1/(exp(2*Pi*sqrt(x))-1) dx (Ramanujan, 1913). - Amiram Eldar, Jan 01 2025
Equals Integral_{x=0..1} x^(1/5) - x^(1/3) dx. - Kritsada Moomuang, May 27 2025
Comments