A021017 Decimal expansion of 1/13.
0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6
Offset: 0
Examples
0.076923076923076923076923076923076923076923...
References
- Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 309.
- Paul J. Nahin, An Imaginary Tale: The Story of sqrt(-1). Princeton, New Jersey: Princeton University Press (1988): 143.
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,-1,1).
Crossrefs
Cf. A219705.
Programs
-
Mathematica
LinearRecurrence[{1, 0, -1, 1}, {0, 7, 6, 9}, 98] (* with C. Barker's formula, Peter Luschny, Aug 15 2012 *) Join[{0},RealDigits[1/13,10,120][[1]]] (* or *) PadRight[{},120,{0,7,6,9,2,3}] (* Harvey P. Dale, Dec 17 2017 *)
Formula
From Colin Barker, Aug 15 2012: (Start)
a(n) = a(n - 1) - a(n - 3) + a(n - 4).
G.f.: -x*(3*x^2 - x + 7)/((x - 1)*(x + 1)*(x^2 - x + 1)). (End)
E.g.f.: (8*cosh(x) - 4*exp(x/2)*(2*cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2)) + 19*sinh(x))/3. - Stefano Spezia, Aug 05 2025
Comments