A021030 Decimal expansion of 1/26.
0, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8
Offset: 0
Examples
0.03846153846153846153846153846...
References
- Christopher Swenson, Modern Cryptanalysis: Techniques for Advanced Code Breaking. Indianopolis, Indiana: Wiley Publishing Inc. (2008): 12 - 15
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,-1,1).
Programs
-
Mathematica
Join[{0}, RealDigits[1/26, 10, 120][[1]]] (* or *) PadRight[{0}, 120, {5, 3, 8, 4, 6, 1}] (* Harvey P. Dale, Dec 19 2012 *)
Formula
Contribution by Bruno Berselli, Sep 13 2011: (Start)
G.f.: x*(3+5*x-4*x^2+5*x^3)/((1-x)*(1+x)*(1-x+x^2)).
a(n) = a(n-1) - a(n-3) + a(n-4) for n > 4.
a(n) = (1/30)*(-11*(n mod 6)+34*((n+1) mod 6) - ((n+2) mod 6) + 29*((n+3) mod 6) - 16*((n+4) mod 6) + 19*((n+5) mod 6)) for n > 0. (End)
Comments