cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A351474 Numbers m such that the largest digit in the decimal expansion of 1/m is 8.

Original entry on oeis.org

7, 12, 14, 26, 28, 35, 48, 54, 55, 56, 63, 65, 70, 72, 78, 79, 93, 117, 120, 123, 125, 128, 140, 175, 176, 186, 192, 195, 205, 224, 239, 259, 260, 264, 280, 296, 312, 318, 328, 350, 372, 416, 432, 438, 448, 465, 480, 540, 542, 546, 548, 550, 555, 560, 572, 584, 594, 630, 632, 650, 675
Offset: 1

Views

Author

Keywords

Comments

If k is a term, 10*k is also a term. First few primitive terms are 7, 12, 14, 26, 28, 35, 48, 54, 55, 56, 63, 65, 72, ...
The seven primes up to 2.7*10^8 are 7, 79, 239, 62003, 538987, 35121409, 265371653 (see comments in A333237, example section and Crossrefs).

Examples

			As 1/7 = 0.142857142857142857..., 7 is a term.
As 1/26 = 0.0384615384615384615..., 26 is another term.
		

Crossrefs

Similar with largest digit k: A333402 (k=1), A341383 (k=2), A350814 (k=3), A351470 (k=4), A351471 (k=5), A351472 (k=6), A351473 (k=7), this sequence (k=8), A333237 (k=9).
Cf. A333236.
Decimal expansion of: A020806 (1/7), A021058 (1/54), A021060 (1/56), A021067 (1/63), A021069 (1/65), A021083 (1/79), A021097 (1/93).

Programs

  • Mathematica
    f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[Range@1500000, Max@ f@# == 8 &]
  • PARI
    isok(m) = my(m2=valuation(m, 2), m5=valuation(m, 5)); vecmax(digits(floor(10^(max(m2,m5) + znorder(Mod(10, m/2^m2/5^m5))+1)/m))) == 8; \\ Michel Marcus, Feb 26 2022
    
  • Python
    from itertools import count, islice
    from sympy import multiplicity, n_order
    def A351474_gen(startvalue=1): # generator of terms >= startvalue
        for a in count(max(startvalue,1)):
            m2, m5 = (~a&a-1).bit_length(), multiplicity(5,a)
            k, m = 10**max(m2,m5), 10**n_order(10,a//(1<A351474_list = list(islice(A351474_gen(),20)) # Chai Wah Wu, May 02 2023

Formula

A333236(a(n)) = 8.

A355183 Decimal expansion of the area of the region that represents the set of points in a unit square that are closer to the center of the square than to the closest edge.

Original entry on oeis.org

2, 1, 8, 9, 5, 1, 4, 1, 6, 4, 9, 7, 4, 6, 0, 0, 6, 5, 0, 6, 8, 9, 1, 8, 2, 9, 8, 9, 4, 6, 2, 6, 4, 1, 0, 4, 7, 5, 9, 5, 6, 2, 5, 0, 0, 5, 0, 2, 5, 9, 7, 4, 3, 0, 9, 0, 2, 2, 3, 9, 6, 5, 0, 6, 5, 4, 3, 0, 9, 9, 7, 1, 2, 8, 2, 8, 0, 9, 3, 8, 5, 1, 3, 3, 8, 5, 0, 0, 4, 5, 7, 7, 0, 1, 8, 8, 7, 6, 3, 6, 4, 6, 6, 8, 5
Offset: 0

Views

Author

Amiram Eldar, Jun 23 2022

Keywords

Comments

The shape is formed by the intersection of four parabolas. Its perimeter is given in A355184.

Examples

			0.21895141649746006506891829894626410475956250050259...
		

References

  • Kiran S. Kedlaya, Bjorn Poonen, and Ravi Vakil, The William Lowell Putnam Mathematical Competition 1985-2000: Problems, Solutions, and Commentary, The Mathematical Association of America, 2002, pp. 108-109.

Crossrefs

Cf. A021058, A103712, A244921, A254140, A352453, A355184 (perimeter), A355185 (3D analog).

Programs

  • Mathematica
    RealDigits[(4*Sqrt[2] - 5)/3, 10, 100][[1]]

Formula

Equals (4*sqrt(2)-5)/3.

A261882 Decimal expansion of 32/27.

Original entry on oeis.org

1, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5
Offset: 1

Views

Author

Keywords

Comments

For any number x >= 32/27 and any e > 0, there is a graph G such that the chromatic polynomial of G has a real root between x - e and x + e. (All real roots of such polynomials are 0, 1, or in this range.)
Continued fraction expansion of (sqrt(730)-10)/9. - Bruno Berselli, Sep 04 2015
Periodic (beyond the first term) with period 3. - Charles R Greathouse IV, Sep 05 2015
Equals the ratio of the wavelengths between the hydrogen spectral lines Lyman-alpha (121.6 nm) and Lyman-beta (102.6 nm). - Sean Stroud, Apr 15 2019

Examples

			1.18518518518518518...
		

Crossrefs

Cf. A021058.

Programs

  • Maple
    Digits := 100; evalf(32/27); # Wesley Ivan Hurt, Sep 04 2015
  • Mathematica
    First@ RealDigits[N[32/27, 120]] (* Michael De Vlieger, Sep 04 2015 *)
    Join[{1}, Table[7 - (-1)^Mod[n - 1, 3]/2 - 5 (-1)^Mod[n, 3]/2 - 4 (-1)^Mod[n + 1, 3], {n, 2, 40}]] (* Wesley Ivan Hurt, Sep 04 2015 *)
  • PARI
    32/27.

Formula

G.f.: x*(1 + x + 8*x^2 + 4*x^3)/((1 - x)*(1 + x + x^2)). - Bruno Berselli, Sep 04 2015
a(n) = 7-(-1)^(n-1 mod 3)/2-5*(-1)^(n mod 3)/2-4*(-1)^(n+1 mod 3), n>1. - Wesley Ivan Hurt, Sep 04 2015
Showing 1-3 of 3 results.