cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A351474 Numbers m such that the largest digit in the decimal expansion of 1/m is 8.

Original entry on oeis.org

7, 12, 14, 26, 28, 35, 48, 54, 55, 56, 63, 65, 70, 72, 78, 79, 93, 117, 120, 123, 125, 128, 140, 175, 176, 186, 192, 195, 205, 224, 239, 259, 260, 264, 280, 296, 312, 318, 328, 350, 372, 416, 432, 438, 448, 465, 480, 540, 542, 546, 548, 550, 555, 560, 572, 584, 594, 630, 632, 650, 675
Offset: 1

Views

Author

Keywords

Comments

If k is a term, 10*k is also a term. First few primitive terms are 7, 12, 14, 26, 28, 35, 48, 54, 55, 56, 63, 65, 72, ...
The seven primes up to 2.7*10^8 are 7, 79, 239, 62003, 538987, 35121409, 265371653 (see comments in A333237, example section and Crossrefs).

Examples

			As 1/7 = 0.142857142857142857..., 7 is a term.
As 1/26 = 0.0384615384615384615..., 26 is another term.
		

Crossrefs

Similar with largest digit k: A333402 (k=1), A341383 (k=2), A350814 (k=3), A351470 (k=4), A351471 (k=5), A351472 (k=6), A351473 (k=7), this sequence (k=8), A333237 (k=9).
Cf. A333236.
Decimal expansion of: A020806 (1/7), A021058 (1/54), A021060 (1/56), A021067 (1/63), A021069 (1/65), A021083 (1/79), A021097 (1/93).

Programs

  • Mathematica
    f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[Range@1500000, Max@ f@# == 8 &]
  • PARI
    isok(m) = my(m2=valuation(m, 2), m5=valuation(m, 5)); vecmax(digits(floor(10^(max(m2,m5) + znorder(Mod(10, m/2^m2/5^m5))+1)/m))) == 8; \\ Michel Marcus, Feb 26 2022
    
  • Python
    from itertools import count, islice
    from sympy import multiplicity, n_order
    def A351474_gen(startvalue=1): # generator of terms >= startvalue
        for a in count(max(startvalue,1)):
            m2, m5 = (~a&a-1).bit_length(), multiplicity(5,a)
            k, m = 10**max(m2,m5), 10**n_order(10,a//(1<A351474_list = list(islice(A351474_gen(),20)) # Chai Wah Wu, May 02 2023

Formula

A333236(a(n)) = 8.

A021654 Decimal expansion of 1/650.

Original entry on oeis.org

0, 0, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1
Offset: 0

Views

Author

Keywords

Comments

A021069 shifted right. - R. J. Mathar, Oct 25 2008

Crossrefs

Cf. A021069.

Programs

  • Mathematica
    Join[{0,0},RealDigits[1/650,10,120][[1]]] (* or *) PadRight[{0,0},120,{4,6,1,5,3,8}] (* Harvey P. Dale, May 21 2023 *)

A021108 Decimal expansion of 1/104.

Original entry on oeis.org

0, 0, 9, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4
Offset: 0

Views

Author

Keywords

Comments

After 9, periodic with period 6: [6, 1, 5, 3, 8, 4]. See also A021030 (1/26), A021069 (1/65), A021420 (1/416), A021654 (1/650). - Bruno Berselli, Apr 13 2018

Examples

			0.009615384615384615384615384615384615384615384615384615384615384...
		

Programs

  • Mathematica
    Join[{0, 0}, RealDigits[1/104, 10, 120][[1]]] (* or *) PadRight[{0, 0, 9, 6}, 120,{3, 8, 4, 6, 1, 5}] (* Harvey P. Dale, Aug 18 2012 *)

Formula

Equals A020821 * A021017 = A020773 * A021030 = A020761 * A021056. - Bruno Berselli, Apr 13 2018

A021199 Decimal expansion of 1/195.

Original entry on oeis.org

0, 0, 5, 1, 2, 8, 2, 0, 5, 1, 2, 8, 2, 0, 5, 1, 2, 8, 2, 0, 5, 1, 2, 8, 2, 0, 5, 1, 2, 8, 2, 0, 5, 1, 2, 8, 2, 0, 5, 1, 2, 8, 2, 0, 5, 1, 2, 8, 2, 0, 5, 1, 2, 8, 2, 0, 5, 1, 2, 8, 2, 0, 5, 1, 2, 8, 2, 0, 5, 1, 2, 8, 2, 0, 5, 1, 2, 8, 2, 0, 5, 1, 2, 8, 2, 0, 5, 1, 2, 8, 2, 0, 5, 1, 2, 8, 2, 0, 5
Offset: 0

Views

Author

Keywords

Comments

Without the initial zeros, decimal expansion of 20/39. Period is of length 6: 5, 1, 2, 8, 2, 0. - Alonso del Arte, May 26 2018

Examples

			0.0051282051282051282051282051282051282...
		

Crossrefs

Cf. A021069 (1/65).

Programs

  • Mathematica
    Join[{0, 0}, RealDigits[1/195, 10, 104][[1]]] (* Alonso del Arte, May 13 2018 *)
Showing 1-4 of 4 results.