cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A105534 Decimal expansion of arctan 1/239.

Original entry on oeis.org

0, 0, 4, 1, 8, 4, 0, 7, 6, 0, 0, 2, 0, 7, 4, 7, 2, 3, 8, 6, 4, 5, 3, 8, 2, 1, 4, 9, 5, 9, 2, 8, 5, 4, 5, 2, 7, 4, 1, 0, 4, 8, 0, 6, 5, 3, 0, 7, 6, 3, 1, 9, 5, 0, 8, 2, 7, 0, 1, 9, 6, 1, 2, 8, 8, 7, 1, 8, 1, 7, 7, 8, 3, 4, 1, 4, 2, 2, 8, 9, 3, 2, 7, 3, 7, 8, 2, 6, 0, 5, 8, 1, 3, 6, 2, 2, 9, 0, 9, 4, 5, 4, 9, 7, 5
Offset: 0

Views

Author

Bryan Jacobs (bryanjj(AT)gmail.com), Apr 12 2005

Keywords

Comments

Comment from Frank Ellermann, Mar 01 2020: (Start)
8*A195790 - arctan( 1/239 ) - 4*arctan( 1/515 ) = Pi/4 (Meissel, Klingenstierna).
12*arctan( 1/18 ) + 8*arctan( 1/57 ) - 5*arctan( 1/239 ) = Pi/4 (Gauss). (End)

Examples

			0.0041840760020747238645382149...
		

Crossrefs

Cf. A003881 (Pi/4), A021243 (1/239), A105532 (arctan 1/5), A195790 (arccot 10).

Programs

  • Mathematica
    len = 103; n = RealDigits[N[ArcTan[1/239], len]]; PadLeft[First@ n, len + Abs@ Last@ n] (* Michael De Vlieger, Sep 14 2015 *)
    Join[{0,0},RealDigits[ArcTan[1/239],10,120][[1]]] (* Harvey P. Dale, Apr 29 2016 *)
  • PARI
    atan(1/239) \\ Michel Marcus, Sep 24 2014

Formula

4*A105532 - arctan(1/239) = Pi/4 (Machin's formula).
arctan(1/239) = Sum_{n >= 1} i/(n*P(n, 239*i)*P(n-1, 239*i)) = 1/239 - 1/40955996 + 1/8773020079176 - 1/1948832181801673304 + 4/1753293766205137615850855 - ..., where i = sqrt(-1) and P(n, x) denotes the n-th Legendre polynomial. - Peter Bala, Mar 21 2024
Showing 1-1 of 1 results.