A021823 Decimal expansion of 1/819.
0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1
Offset: 0
Examples
0.0012210012210012210...
Links
- Index entries for linear recurrences with constant coefficients, signature (2,-2,1).
Programs
-
Mathematica
Join[{0,0},RealDigits[1/819,10,120][[1]]] (* or *) PadRight[{},120,{0,0,1,2,2,1}] (* or *) LinearRecurrence[{2,-2,1},{0,0,1},120] (* Harvey P. Dale, Aug 19 2012 *)
-
PARI
a(n)=1/819. \\ Charles R Greathouse IV, Sep 24 2015
Formula
a(n) = a(n-1)-a(n-2)+1 = 2-a(n-3) = a(n-6). - Henry Bottomley, Apr 12 2000
a(n) = Sum_{k=1..floor(n/2)} (-1)^(k+1)*binomial(n-k, k) = 1-((-1)^floor(n/3)+(-1)^(floor((n+1)/3)))/2. - Vladeta Jovovic, Feb 10 2003
G.f.: x^2/(1-2x+2x^2-x^3)=x^2/((1-x)(x^2-x+1)). - Paul Barry, Jun 06 2003
a(n+2) = sum{k=0..n, binomial(n-2k, n-k)}. - Paul Barry, Jan 15 2005
a(0)=0, a(1)=0, a(2)=1, a(n)=2*a(n-1)-2*a(n-2)+a(n-3). - Harvey P. Dale, Aug 19 2012
Comments