A022022 Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(5,45).
5, 45, 406, 3664, 33067, 298425, 2693244, 24306152, 219359637, 1979690177, 17866428166, 161242026212, 1455186832835, 13132858524565, 118522219370436, 1069646525028644, 9653410934956277, 87120689404042085, 786252089896134534, 7095815621924558952, 64038747861388870507
Offset: 0
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, [5, 45][n+1], floor(a(n-1)^2/a(n-2))+1) end: seq(a(n), n=0..30); # Alois P. Heinz, Sep 18 2015
-
Mathematica
nxt[{a_,b_}]:=Module[{c=Ceiling[b^2/a]},c=If[c<=b^2/a,c+1,c];{b,c}]; Transpose[NestList[nxt,{5,45},20]][[1]] (* Harvey P. Dale, Feb 11 2014 *)
-
PARI
a=[5,45];for(n=2,30,a=concat(a,a[n]^2\a[n-1]+1));a \\ M. F. Hasler, Feb 10 2016
Formula
a(n+1) = floor(a(n)^2/a(n-1))+1 for all n > 0. - M. F. Hasler, Feb 10 2016
Extensions
Double-checked and edited by M. F. Hasler, Feb 10 2016
Comments