A022093 Fibonacci sequence beginning 0, 10.
0, 10, 10, 20, 30, 50, 80, 130, 210, 340, 550, 890, 1440, 2330, 3770, 6100, 9870, 15970, 25840, 41810, 67650, 109460, 177110, 286570, 463680, 750250, 1213930, 1964180, 3178110, 5142290, 8320400, 13462690, 21783090, 35245780, 57028870, 92274650, 149303520, 241578170
Offset: 0
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 15.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Programs
-
Magma
[10*Fibonacci(n): n in [0..40]]; // Vincenzo Librandi, Dec 31 2016
-
Mathematica
LinearRecurrence[{1, 1}, {0, 10}, 40] (* Bruno Berselli, Dec 30 2016 *) Table[Fibonacci[n + 5] + Fibonacci[n - 5] - 5 Fibonacci[n], {n, 1, 40}] (* Bruno Berselli, Dec 30 2016 *) Table[10 Fibonacci[n], {n, 0, 100}] (* Vincenzo Librandi, Dec 31 2016 *)
-
SageMath
A022093=BinaryRecurrenceSequence(1,1,0,10) [A022093(n) for n in range(51)] # G. C. Greubel, Jun 02 2025
Formula
a(n) = 10*F(n) = F(n+4) + F(n+2) + F(n-2) + F(n-4) for n>3, where F = A000045.
a(n) = round((4*phi-2)*phi^n) for n>4. - Thomas Baruchel, Sep 08 2004
G.f.: 10*x/(1 - x - x^2). - Philippe Deléham, Nov 20 2008
a(n) = F(n+5) + F(n-5) - 5*F(n) for n>0. - Bruno Berselli, Dec 29 2016
a(n) = Lucas(n+3) + Lucas(n-3), where Lucas(-n) = (-1)^n*Lucas(n) for the negative indices. - Bruno Berselli, Jun 13 2017