cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022093 Fibonacci sequence beginning 0, 10.

Original entry on oeis.org

0, 10, 10, 20, 30, 50, 80, 130, 210, 340, 550, 890, 1440, 2330, 3770, 6100, 9870, 15970, 25840, 41810, 67650, 109460, 177110, 286570, 463680, 750250, 1213930, 1964180, 3178110, 5142290, 8320400, 13462690, 21783090, 35245780, 57028870, 92274650, 149303520, 241578170
Offset: 0

Views

Author

Keywords

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 15.

Crossrefs

Programs

  • Magma
    [10*Fibonacci(n): n in [0..40]]; // Vincenzo Librandi, Dec 31 2016
    
  • Mathematica
    LinearRecurrence[{1, 1}, {0, 10}, 40] (* Bruno Berselli, Dec 30 2016 *)
    Table[Fibonacci[n + 5] + Fibonacci[n - 5] - 5 Fibonacci[n], {n, 1, 40}] (* Bruno Berselli, Dec 30 2016 *)
    Table[10 Fibonacci[n], {n, 0, 100}] (* Vincenzo Librandi, Dec 31 2016 *)
  • SageMath
    A022093=BinaryRecurrenceSequence(1,1,0,10)
    [A022093(n) for n in range(51)] # G. C. Greubel, Jun 02 2025

Formula

a(n) = 10*F(n) = F(n+4) + F(n+2) + F(n-2) + F(n-4) for n>3, where F = A000045.
a(n) = round((4*phi-2)*phi^n) for n>4. - Thomas Baruchel, Sep 08 2004
G.f.: 10*x/(1 - x - x^2). - Philippe Deléham, Nov 20 2008
a(n) = F(n+5) + F(n-5) - 5*F(n) for n>0. - Bruno Berselli, Dec 29 2016
a(n) = Lucas(n+3) + Lucas(n-3), where Lucas(-n) = (-1)^n*Lucas(n) for the negative indices. - Bruno Berselli, Jun 13 2017