A022098 Fibonacci sequence beginning 1, 8.
1, 8, 9, 17, 26, 43, 69, 112, 181, 293, 474, 767, 1241, 2008, 3249, 5257, 8506, 13763, 22269, 36032, 58301, 94333, 152634, 246967, 399601, 646568, 1046169, 1692737, 2738906, 4431643, 7170549, 11602192, 18772741, 30374933, 49147674, 79522607, 128670281
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Programs
-
Magma
a0:=1; a1:=8; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]]; // Bruno Berselli, Feb 12 2013
-
Mathematica
LinearRecurrence[{1, 1}, {1, 8}, 40] (* Alonso del Arte, Sep 26 2013 *) CoefficientList[Series[(1 + 7 x)/(1 - x - x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 27 2013 *) Table[LucasL[n + 3] + LucasL[n - 3] - 3 LucasL[n], {n, 2, 40}] (* Bruno Berselli, Dec 30 2016 *)
-
PARI
a(n)=([0,1; 1,1]^n*[1;8])[1,1] \\ Charles R Greathouse IV, Oct 07 2016
Formula
a(n) = a(n-1) + a(n-2) for n>1, a(0)=1, a(1)=8, and a(-1):=7.
G.f.: (1 + 7*x)/(1 - x - x^2).
a(n) = ((1 + sqrt(5))^n - (1 - sqrt(5))^n)/(2^n*sqrt(5)) + 3.5*((1 + sqrt(5))^(n-1) - (1 - sqrt(5))^(n-1))/(2^(n-2)*sqrt(5)) for n>0. - Al Hakanson (hawkuu(AT)gmail.com), Jan 14 2009
a(n) = 2^(-1-n)*((1 - sqrt(5))^n*(-15 + sqrt(5)) + (1 + sqrt(5))^n*(15 + sqrt(5)))/sqrt(5). - Herbert Kociemba, Dec 18 2011
a(n) = Lucas(n+5) + Lucas(n-1) - 3*Lucas(n+2). - Bruno Berselli, Dec 29 2016, corrected by Greg Dresden, Mar 02 2022
a(n) = Lucas(n+3) - Lucas(n-2). - Greg Dresden and Michael Nyc, Mar 02 2022
Comments