A022099 Fibonacci sequence beginning 1, 9.
1, 9, 10, 19, 29, 48, 77, 125, 202, 327, 529, 856, 1385, 2241, 3626, 5867, 9493, 15360, 24853, 40213, 65066, 105279, 170345, 275624, 445969, 721593, 1167562, 1889155, 3056717, 4945872, 8002589, 12948461, 20951050, 33899511, 54850561, 88750072, 143600633, 232350705
Offset: 0
Links
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Programs
-
Magma
a0:=1; a1:=9; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]]; // Bruno Berselli, Feb 12 2013
-
Mathematica
LinearRecurrence[{1, 1}, {1, 9}, 36] (* Robert G. Wilson v, Apr 11 2014 *)
Formula
a(n) = a(n-1) + a(n-2), n>=2, a(0)=1, a(1)=9. a(-1):=8.
G.f.: (1+8*x)/(1-x-x^2).
a(n+1) = ((1 + sqrt(5))^n - (1 - sqrt(5))^n)/(2^n*sqrt(5))+ 4*((1 + sqrt(5))^(n-1) - (1 - sqrt(5))^(n-1))/(2^(n-2)*sqrt(5)). - Al Hakanson (hawkuu(AT)gmail.com), Jan 14 2009
a(n) = Lucas(n+3) + Fibonacci(n-4). - Greg Dresden and Mary Beth Pittman, Mar 12 2022
Comments