A101220
a(n) = Sum_{k=0..n} Fibonacci(n-k)*n^k.
Original entry on oeis.org
0, 1, 3, 14, 91, 820, 9650, 140601, 2440317, 49109632, 1123595495, 28792920872, 816742025772, 25402428294801, 859492240650847, 31427791175659690, 1234928473553777403, 51893300561135516404, 2322083099525697299278
Offset: 0
a(1,3,3) = 6 because a(1,3,0) = 0, a(1,3,1) = 1, a(1,3,2) = 2 and 4*2 - 2*1 - 3*0 = 6.
a(1, 2, k+1) - a(1, 2, k) =
A099036(k).
a(3, 2, k+1) - a(3, 2, k) =
A104004(k).
a(4, 2, k+1) - a(4, 2, k) =
A027973(k).
a(1, 3, k+1) - a(1, 3, k) =
A099159(k).
a(2^i-2, 0, k+1) =
A118654(i, k), for i > 0.
Sequences of the form a(n, 0, k):
A000045(k+1) (n=1),
A000032(k) (n=2),
A000285(k-1) (n=3),
A022095(k-1) (n=4),
A022096(k-1) (n=5),
A022097(k-1) (n=6),
A022098(k-1) (n=7),
A022099(k-1) (n=8),
A022100(k-1) (n=9),
A022101(k-1) (n=10),
A022102(k-1) (n=11),
A022103(k-1) (n=12),
A022104(k-1) (n=13),
A022105(k-1) (n=14),
A022106(k-1) (n=15),
A022107(k-1) (n=16),
A022108(k-1) (n=17),
A022109(k-1) (n=18),
A022110(k-1) (n=19),
A088209(k-2) (n=k-2),
A007502(k) (n=k-1),
A094588(k) (n=k).
Sequences of the form a(4, n, k):
A053311(k-1) (n=1),
A027974(k-1) (n=2).
-
A101220:= func< n | (&+[n^k*Fibonacci(n-k): k in [0..n]]) >;
[A101220(n): n in [0..30]]; // G. C. Greubel, Jun 01 2025
-
Join[{0}, Table[Sum[Fibonacci[n-k]*n^k, {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Jan 03 2021 *)
-
a(n)=sum(k=0,n,fibonacci(n-k)*n^k) \\ Joerg Arndt, Jan 03 2021
-
def A101220(n): return sum(n^k*fibonacci(n-k) for k in range(n+1))
print([A101220(n) for n in range(31)]) # G. C. Greubel, Jun 01 2025
A109754
Matrix defined by: a(i,0) = 0, a(i,j) = i*Fibonacci(j-1) + Fibonacci(j), for j > 0; read by ascending antidiagonals.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 3, 3, 0, 1, 4, 4, 5, 5, 0, 1, 5, 5, 7, 8, 8, 0, 1, 6, 6, 9, 11, 13, 13, 0, 1, 7, 7, 11, 14, 18, 21, 21, 0, 1, 8, 8, 13, 17, 23, 29, 34, 34, 0, 1, 9, 9, 15, 20, 28, 37, 47, 55, 55, 0, 1, 10, 10, 17, 23, 33, 45, 60, 76, 89, 89
Offset: 0
Table starts:
[0] 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
[1] 0, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...
[2] 0, 1, 3, 4, 7, 11, 18, 29, 47, 76, ...
[3] 0, 1, 4, 5, 9, 14, 23, 37, 60, 97, ...
[4] 0, 1, 5, 6, 11, 17, 28, 45, 73, 118, ...
[5] 0, 1, 6, 7, 13, 20, 33, 53, 86, 139, ...
[6] 0, 1, 7, 8, 15, 23, 38, 61, 99, 160, ...
[7] 0, 1, 8, 9, 17, 26, 43, 69, 112, 181, ...
[8] 0, 1, 9, 10, 19, 29, 48, 77, 125, 202, ...
[9] 0, 1, 10, 11, 21, 32, 53, 85, 138, 223, ...
Rows:
A000045(j);
A000045(j+1), for j > 0;
A000032(j), for j > 0;
A000285(j-1), for j > 0;
A022095(j-1), for j > 0;
A022096(j-1), for j > 0;
A022097(j-1), for j > 0. Diagonals: a(i, i) =
A094588(i); a(i, i+1) =
A007502(i+1); a(i, i+2) =
A088209(i); Sum[a(i-j, j), {j=0...i}] =
A104161(i). a(i, j) =
A101220(i, 0, j).
Rows 7 - 19:
A022098(j-1), for j > 0;
A022099(j-1), for j > 0;
A022100(j-1), for j > 0;
A022101(j-1), for j > 0;
A022102(j-1), for j > 0;
A022103(j-1), for j > 0;
A022104(j-1), for j > 0;
A022106(j-1), for j > 0;
A022107(j-1), for j > 0;
A022108(j-1), for j > 0;
A022109(j-1), for j > 0;
A022110(j-1), for j > 0.
a(2^i-2, j+1) =
A118654(i, j), for i > 0.
-
A := (n, k) -> ifelse(k = 0, 0,
n*combinat:-fibonacci(k-1) + combinat:-fibonacci(k)):
seq(seq(A(n - k, k), k = 0..n), n = 0..6); # Peter Luschny, May 28 2022
-
T[n_, 0]:= 0; T[n_, 1]:= 1; T[n_, 2]:= n - 1; T[n_, 3]:= n - 1; T[n_, n_]:= Fibonacci[n]; T[n_, k_]:= T[n, k] = T[n - 1, k - 1] + T[n - 2, k - 2]; Table[T[n, k], {n, 0, 15}, {k, 0, n}] (* G. C. Greubel, Jan 07 2017 *)
A093644
(9,1) Pascal triangle.
Original entry on oeis.org
1, 9, 1, 9, 10, 1, 9, 19, 11, 1, 9, 28, 30, 12, 1, 9, 37, 58, 42, 13, 1, 9, 46, 95, 100, 55, 14, 1, 9, 55, 141, 195, 155, 69, 15, 1, 9, 64, 196, 336, 350, 224, 84, 16, 1, 9, 73, 260, 532, 686, 574, 308, 100, 17, 1, 9, 82, 333, 792, 1218, 1260, 882, 408, 117, 18, 1, 9, 91, 415
Offset: 0
Triangle begins
[1];
[9, 1];
[9, 10, 1];
[9, 19, 11, 1];
...
- Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
- Ivo Schneider: Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch.5, pp. 109-122.
Row sums:
A020714(n-1), n >= 1, 1 for n=0, alternating row sums are 1 for n=0, 8 for n=2 and 0 otherwise.
-
a093644 n k = a093644_tabl !! n !! k
a093644_row n = a093644_tabl !! n
a093644_tabl = [1] : iterate
(\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [9, 1]
-- Reinhard Zumkeller, Aug 31 2014
-
Join[{1},Table[Binomial[n,k]+8Binomial[n-1,k],{n,20},{k,0,n}]//Flatten] (* Harvey P. Dale, Aug 17 2024 *)
A352744
Array read by ascending antidiagonals. Generalized Fibonacci numbers F(n, k) = (psi^k*(phi - n) - phi^k*(psi - n)) / (phi - psi) where phi = (1 + sqrt(5))/2 and psi = (1 - sqrt(5))/2. F(n, k) for n >= 0 and k >= 0.
Original entry on oeis.org
1, 1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 3, 3, 3, 2, 1, 4, 4, 5, 5, 3, 1, 5, 5, 7, 8, 8, 5, 1, 6, 6, 9, 11, 13, 13, 8, 1, 7, 7, 11, 14, 18, 21, 21, 13, 1, 8, 8, 13, 17, 23, 29, 34, 34, 21, 1, 9, 9, 15, 20, 28, 37, 47, 55, 55, 34, 1, 10, 10, 17, 23, 33, 45, 60, 76, 89, 89, 55
Offset: 0
Array starts:
n\k 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
---------------------------------------------------------
[0] 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, ... A212804
[1] 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ... A000045 (shifted once)
[2] 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... A000045 (shifted twice)
[3] 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, ... A000032 (shifted once)
[4] 1, 4, 5, 9, 14, 23, 37, 60, 97, 157, ... A000285
[5] 1, 5, 6, 11, 17, 28, 45, 73, 118, 191, ... A022095
[6] 1, 6, 7, 13, 20, 33, 53, 86, 139, 225, ... A022096
[7] 1, 7, 8, 15, 23, 38, 61, 99, 160, 259, ... A022097
[8] 1, 8, 9, 17, 26, 43, 69, 112, 181, 293, ... A022098
[9] 1, 9, 10, 19, 29, 48, 77, 125, 202, 327, ... A022099
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, sec. 6.6.
- Donald Ervin Knuth, The Art of Computer Programming, Third Edition, Vol. 1, Fundamental Algorithms. Chapter 1.2.8 Fibonacci Numbers. Addison-Wesley, Reading, MA, 1997.
- Alexander Bogomolny, Cassini's Identity.
- Edsger W. Dijkstra, In honour of Fibonacci, in: F. L. Bauer, M. Broy, & E. W. Dijkstra (editors), Program Construction, 1979, Lecture Notes in Computer Science, Vol. 69.
- Peter Luschny, The Fibonacci Function.
Similar arrays based on the Catalan and the Bell numbers are
A352680 and
A352682.
-
# Time complexity is O(lg n).
function fibrec(n::Int)
n == 0 && return (BigInt(0), BigInt(1))
a, b = fibrec(div(n, 2))
c = a * (b * 2 - a)
d = a * a + b * b
iseven(n) ? (c, d) : (d, c + d)
end
function Fibonacci(n::Int, k::Int)
k == 0 && return BigInt(1)
k < 0 && return (-1)^k*Fibonacci(1 - n, -k)
a, b = fibrec(k - 1)
a + b*n
end
for n in -6:6
println([Fibonacci(n, k) for k in -6:6])
end
-
f := n -> combinat:-fibonacci(n + 1): F := (n, k) -> (n-1)*f(k-1) + f(k):
seq(seq(F(n-k, k), k = 0..n), n = 0..9);
# The next implementation is for illustration only but is not recommended
# as it relies on floating point arithmetic.
phi := (1 + sqrt(5))/2: psi := (1 - sqrt(5))/2:
F := (n, k) -> (psi^k*(phi - n) - phi^k*(psi - n)) / (phi - psi):
for n from -6 to 6 do lprint(seq(simplify(F(n, k)), k = -6..6)) od;
-
Table[LinearRecurrence[{1, 1}, {1, n}, 10], {n, 0, 9}] // TableForm
F[ n_, k_] := (MatrixPower[{{0, 1}, {1, 1}}, k].{{1}, {n}})[[1, 1]]; (* Michael Somos, May 08 2022 *)
c := Pi/2 - I*ArcSinh[1/2]; (* Based on a remark from Bill Gosper. *)
F[n_, k_] := 2 (I (n-1) Sin[k c] + Sin[(k+1) c]) / (I^k Sqrt[5]);
Table[Simplify[F[n, k]], {n, -6, 6}, {k, -6, 6}] // TableForm (* Peter Luschny, May 10 2022 *)
-
F(n, k) = ([0, 1; 1, 1]^k*[1; n])[1, 1]
-
{F(n, k) = n*fibonacci(k) + fibonacci(k-1)}; /* Michael Somos, May 08 2022 */
A353595
Array read by ascending antidiagonals. Generalized Fibonacci numbers F(n, k) = (psi^(k - 1)*(phi + n) - phi^(k - 1)*(psi + n)) / (psi - phi) where phi = (1+sqrt(5))/2 and psi = (1-sqrt(5))/2. F(n, k) for n >= 0 and k >= 0.
Original entry on oeis.org
0, 1, 1, 2, 1, 1, 3, 1, 2, 2, 4, 1, 3, 3, 3, 5, 1, 4, 4, 5, 5, 6, 1, 5, 5, 7, 8, 8, 7, 1, 6, 6, 9, 11, 13, 13, 8, 1, 7, 7, 11, 14, 18, 21, 21, 9, 1, 8, 8, 13, 17, 23, 29, 34, 34, 10, 1, 9, 9, 15, 20, 28, 37, 47, 55, 55, 11, 1, 10, 10, 17, 23, 33, 45, 60, 76, 89, 89
Offset: 0
Array starts:
n\k 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
--------------------------------------------------------
[0] 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... A000045
[1] 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ... A000045 (shifted once)
[2] 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, ... A000032
[3] 3, 1, 4, 5, 9, 14, 23, 37, 60, 97, ... A104449
[4] 4, 1, 5, 6, 11, 17, 28, 45, 73, 118, ... [4] + A022095
[5] 5, 1, 6, 7, 13, 20, 33, 53, 86, 139, ... [5] + A022096
[6] 6, 1, 7, 8, 15, 23, 38, 61, 99, 160, ... [6] + A022097
[7] 7, 1, 8, 9, 17, 26, 43, 69, 112, 181, ... [7] + A022098
[8] 8, 1, 9, 10, 19, 29, 48, 77, 125, 202, ... [8] + A022099
[9] 9, 1, 10, 11, 21, 32, 53, 85, 138, 223, ... [9] + A022100
-
function fibrec(n::Int)
n == 0 && return (BigInt(0), BigInt(1))
a, b = fibrec(div(n, 2))
c = a * (b * 2 - a)
d = a * a + b * b
iseven(n) ? (c, d) : (d, c + d)
end
function Fibonacci(n::Int, k::Int)
k == 0 && return BigInt(n)
k == 1 && return BigInt(1)
k < 0 && return (-1)^(k-1)*Fibonacci(-n - 1, 2 - k)
a, b = fibrec(k - 1)
a*n + b
end
for n in -6:6
println([n], [Fibonacci(n, k) for k in -6:6])
end
-
f := n -> combinat:-fibonacci(n): F := (n, k) -> n*f(k - 1) + f(k):
seq(seq(F(n - k, k), k = 0..n), n = 0..11);
# The next implementation is for illustration only but is not recommended
# as it relies on floating point arithmetic. Illustrates the case n,k < 0.
phi := (1 + sqrt(5))/2: psi := (1 - sqrt(5))/2:
F := (n, k) -> (psi^(k-1)*(psi + n) - phi^(k-1)*(phi + n)) / (psi - phi):
for n from -6 to 6 do lprint(seq(simplify(F(n, k)), k = -6..6)) od;
-
(* Works also for n < 0 and k < 0. Uses a remark from Bill Gosper. *)
c := I*ArcSinh[1/2] - Pi/2;
F[n_, k_] := (n Sin[(k - 1) c] - I Sin[k c]) / (I^k Sqrt[5/4]);
Table[Simplify[F[n, k]], {n, 0, 6}, {k, 0, 6}] // TableForm
A022371
Fibonacci sequence beginning 2, 18.
Original entry on oeis.org
2, 18, 20, 38, 58, 96, 154, 250, 404, 654, 1058, 1712, 2770, 4482, 7252, 11734, 18986, 30720, 49706, 80426, 130132, 210558, 340690, 551248, 891938, 1443186, 2335124, 3778310, 6113434, 9891744, 16005178
Offset: 0
-
a={};b=2;c=18;AppendTo[a, b];AppendTo[a, c];Do[b=b+c;AppendTo[a, b];c=b+c;AppendTo[a, c], {n, 4!}];a (* Vladimir Joseph Stephan Orlovsky, Sep 18 2008 *)
Transpose[NestList[{Last[#],Total[#]}&,{2,18},30]][[1]] (* Harvey P. Dale, Apr 13 2011 *)
LinearRecurrence[{1,1},{2,18},40] (* Harvey P. Dale, Jun 26 2021 *)
-
for(n=0,50, print1(2*(fibonacci(n+2) + 7*fibonacci(n)), ", ")) \\ G. C. Greubel, Aug 27 2017
A172172
Sums of NW-SE diagonals of triangle A172171.
Original entry on oeis.org
0, 1, 10, 20, 39, 68, 116, 193, 318, 520, 847, 1376, 2232, 3617, 5858, 9484, 15351, 24844, 40204, 65057, 105270, 170336, 275615, 445960, 721584, 1167553, 1889146, 3056708, 4945863, 8002580, 12948452, 20951041, 33899502, 54850552, 88750063, 143600624, 232350696
Offset: 0
-
[Lucas(n+2) +6*Fibonacci(n+1) -9: n in [0..50]]; // G. C. Greubel, Apr 25 2022
-
CoefficientList[Series[x*(1+8*x)/((1-x)*(1-x-x^2)), {x,0,50}], x] (* G. C. Greubel, Jul 13 2017 *)
-
concat(0, Vec(x*(1+8*x)/((1-x)*(1-x-x^2)) + O(x^50))) \\ Colin Barker, Jul 13 2017
-
[fibonacci(n+3) +7*fibonacci(n+1) -9 for n in (0..50)] # G. C. Greubel, Apr 25 2022
A022313
a(n) = a(n-1) + a(n-2) + 1, with a(0) = 0 and a(1) = 8.
Original entry on oeis.org
0, 8, 9, 18, 28, 47, 76, 124, 201, 326, 528, 855, 1384, 2240, 3625, 5866, 9492, 15359, 24852, 40212, 65065, 105278, 170344, 275623, 445968, 721592, 1167561, 1889154, 3056716, 4945871, 8002588, 12948460, 20951049, 33899510, 54850560, 88750071, 143600632
Offset: 0
-
LinearRecurrence[{2, 0, -1}, {0, 8, 9}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *)
RecurrenceTable[{a[0]==0,a[1]==8,a[n]==a[n-1]+a[n-2]+1},a,{n,40}] (* Harvey P. Dale, Nov 23 2017 *)
-
x='x+O('x^50); concat([0], Vec(x*(8-7*x)/( (1-x)*(1-x-x^2) ))) \\ G. C. Greubel, Aug 25 2017
Showing 1-8 of 8 results.
Comments