A172171
(1, 9) Pascal Triangle read by horizontal rows. Same as A093644, but mirrored and without the additional row/column (1, 9, 9, 9, 9, ...).
Original entry on oeis.org
1, 1, 10, 1, 11, 19, 1, 12, 30, 28, 1, 13, 42, 58, 37, 1, 14, 55, 100, 95, 46, 1, 15, 69, 155, 195, 141, 55, 1, 16, 84, 224, 350, 336, 196, 64, 1, 17, 100, 308, 574, 686, 532, 260, 73, 1, 18, 117, 408, 882, 1260, 1218, 792, 333, 82
Offset: 1
Triangle begins:
1;
1, 10;
1, 11, 19;
1, 12, 30, 28;
1, 13, 42, 58, 37;
1, 14, 55, 100, 95, 46;
1, 15, 69, 155, 195, 141, 55;
1, 16, 84, 224, 350, 336, 196, 64;
1, 17, 100, 308, 574, 686, 532, 260, 73;
1, 18, 117, 408, 882, 1260, 1218, 792, 333, 82;
1, 19, 135, 525, 1290, 2142, 2478, 2010, 1125, 415, 91;
1, 20, 154, 660, 1815, 3432, 4620, 4488, 3135, 1540, 506, 100;
-
T[n_, k_]:= T[n, k]= If[k<1 || k>n, 0, If[k==1, 1, If[n==2 && k==2, 10, T[n-1, k] + 2*T[n-1, k-1] - T[n-2, k-1] - T[n-2, k-2]]]];
Table[T[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Apr 24 2022 *)
-
@CachedFunction
def T(n,k):
if (k<1 or k>n): return 0
elif (k==1): return 1
elif (n==2 and k==2): return 10
else: return T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2)
flatten([[T(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Apr 24 2022
A020714
a(n) = 5 * 2^n.
Original entry on oeis.org
5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240, 20480, 40960, 81920, 163840, 327680, 655360, 1310720, 2621440, 5242880, 10485760, 20971520, 41943040, 83886080, 167772160, 335544320, 671088640, 1342177280, 2684354560, 5368709120, 10737418240
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..238
- John Elias, Illustration: Alternating Tetrahedrons of Tetrahedrons
- Tanya Khovanova, Recursive Sequences.
- Petro Kosobutskyy, Anastasiia Yedyharova, and Taras Slobodzyan, From Newton's binomial and Pascal's triangle to Collatz's problem, Comp. Des. Sys., Theor. Practice (2023) Vol. 5, No. 1, 121-127.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1003.
- Everett Sullivan, Linear chord diagrams with long chords, arXiv preprint arXiv:1611.02771 [math.CO], 2016. See Table 1.
- Index entries for linear recurrences with constant coefficients, signature (2).
Row sums of (4, 1)-Pascal triangle
A093561.
Row sums of (9, 1)-Pascal triangle
A093644.
Row sums of (1, 4)-Pascal triangle
A095666 (with leading 4).
A051682
11-gonal (or hendecagonal) numbers: a(n) = n*(9*n-7)/2.
Original entry on oeis.org
0, 1, 11, 30, 58, 95, 141, 196, 260, 333, 415, 506, 606, 715, 833, 960, 1096, 1241, 1395, 1558, 1730, 1911, 2101, 2300, 2508, 2725, 2951, 3186, 3430, 3683, 3945, 4216, 4496, 4785, 5083, 5390, 5706, 6031, 6365, 6708, 7060, 7421, 7791, 8170
Offset: 0
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
- Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
[n*(9*n-7)/2 : n in [0..50]]; // Wesley Ivan Hurt, Aug 01 2015
-
Table[n (9n-7)/2,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,1,11},51] (* Harvey P. Dale, May 07 2012 *)
-
a(n)=(9*n-7)*n/2 \\ Charles R Greathouse IV, Jun 16 2011
A029653
Numbers in (2,1)-Pascal triangle (by row).
Original entry on oeis.org
1, 2, 1, 2, 3, 1, 2, 5, 4, 1, 2, 7, 9, 5, 1, 2, 9, 16, 14, 6, 1, 2, 11, 25, 30, 20, 7, 1, 2, 13, 36, 55, 50, 27, 8, 1, 2, 15, 49, 91, 105, 77, 35, 9, 1, 2, 17, 64, 140, 196, 182, 112, 44, 10, 1, 2, 19, 81, 204, 336, 378, 294, 156, 54, 11, 1, 2, 21, 100, 285
Offset: 0
The triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 2 1
2: 2 3 1
3: 2 5 4 1
4: 2 7 9 5 1
5: 2 9 16 14 6 1
6: 2 11 25 30 20 7 1
7: 2 13 36 55 50 27 8 1
8: 2 15 49 91 105 77 35 9 1
9: 2 17 64 140 196 182 112 44 10 1
10: 2 19 81 204 336 378 294 156 54 11 1
... Reformatted. - _Wolfdieter Lang_, Jan 09 2015
With the array M(k) as defined in the Formula section, the infinite product M(0)*M(1)*M(2)*... begins
/1 \/1 \/1 \ /1 \
|2 1 ||0 1 ||0 1 | |2 1 |
|2 1 1 ||0 2 1 ||0 0 1 |... = |2 3 1 |
|2 1 1 1 ||0 2 1 1 ||0 0 2 1 | |2 5 4 1 |
|2 1 1 1 1||0 2 1 1 1 ||0 0 2 1 1| |2 7 9 5 1|
|... ||... ||... | |... |
- _Peter Bala_, Dec 27 2014
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- Mohammad K. Azarian, Identities Involving Lucas or Fibonacci and Lucas Numbers as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 45, 2012, pp. 2221-2227.
- Paul Barry, A Note on a Family of Generalized Pascal Matrices Defined by Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.5.4.
- Hacene Belbachir and Athmane Benmezai, Expansion of Fibonacci and Lucas Polynomials: An Answer to Prodinger's Question, Journal of Integer Sequences, Vol. 15 (2012), #12.7.6.
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 39.
- H. Hosoya, Pascal's triangle, non-adjacent numbers and D-dimensional atomic orbitals, J. Math. Chemistry, vol. 23, 1998, 169-178.
- M. Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 13 2013
- M. Janjic and B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5
- Huyile Liang, Yanni Pei, and Yi Wang, Analytic combinatorics of coordination numbers of cubic lattices, arXiv:2302.11856 [math.CO], 2023. See p. 8.
- Mark C. Wilson, Asymptotics for generalized Riordan arrays. International Conference on Analysis of Algorithms DMTCS proc. AD. Vol. 323. 2005.
-
a029653 n k = a029653_tabl !! n !! k
a029653_row n = a029653_tabl !! n
a029653_tabl = [1] : iterate
(\xs -> zipWith (+) ([0] ++ xs) (xs ++ [0])) [2, 1]
-- Reinhard Zumkeller, Dec 16 2013
-
A029653 := proc(n,k)
if n = 0 then
1;
else
binomial(n-1, k)+binomial(n, k)
fi
end proc: # R. J. Mathar, Jun 30 2013
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208510 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A029653 *)
(* Clark Kimberling, Feb 28 2012 *)
-
from sympy import Poly
from sympy.abc import x
def u(n, x): return 1 if n==1 else u(n - 1, x) + x*v(n - 1, x)
def v(n, x): return 1 if n==1 else u(n - 1, x) + x*v(n - 1, x) + 1
def a(n): return Poly(v(n, x), x).all_coeffs()[::-1]
for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 27 2017
-
from math import comb, isqrt
def A029653(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),a:=n-comb(r+1,2))*((r<<1)-a)//r if n else 1 # Chai Wah Wu, Nov 12 2024
A017173
a(n) = 9*n + 1.
Original entry on oeis.org
1, 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 109, 118, 127, 136, 145, 154, 163, 172, 181, 190, 199, 208, 217, 226, 235, 244, 253, 262, 271, 280, 289, 298, 307, 316, 325, 334, 343, 352, 361, 370, 379, 388, 397, 406, 415, 424, 433, 442, 451, 460, 469, 478
Offset: 0
Cf.
A093644 ((9,1) Pascal, column m=1).
-
a017173 = (+ 1) . (* 9)
a017173_list = [1, 10 ..] -- Reinhard Zumkeller, Feb 04 2014
-
Range[1, 1000, 9] (* Vladimir Joseph Stephan Orlovsky, May 28 2011 *)
LinearRecurrence[{2,-1},{1,10},60] (* Harvey P. Dale, Dec 27 2014 *)
-
forstep(n=1,500,9,print1(n", ")) \\ Charles R Greathouse IV, May 28 2011
-
[i+1 for i in range(480) if gcd(i,9) == 9] # Zerinvary Lajos, May 20 2009
A228196
A triangle formed like Pascal's triangle, but with n^2 on the left border and 2^n on the right border instead of 1.
Original entry on oeis.org
0, 1, 2, 4, 3, 4, 9, 7, 7, 8, 16, 16, 14, 15, 16, 25, 32, 30, 29, 31, 32, 36, 57, 62, 59, 60, 63, 64, 49, 93, 119, 121, 119, 123, 127, 128, 64, 142, 212, 240, 240, 242, 250, 255, 256, 81, 206, 354, 452, 480, 482, 492, 505, 511, 512, 100, 287, 560, 806, 932, 962, 974, 997, 1016, 1023, 1024
Offset: 1
The start of the sequence as a triangular array read by rows:
0;
1, 2;
4, 3, 4;
9, 7, 7, 8;
16, 16, 14, 15, 16;
25, 32, 30, 29, 31, 32;
36, 57, 62, 59, 60, 63, 64;
Cf. We denote Pascal-like triangle with L(n) on the left border and R(n) on the right border by (L(n),R(n)).
A007318 (1,1),
A008949 (1,2^n),
A029600 (2,3),
A029618 (3,2),
A029635 (1,2),
A029653 (2,1),
A037027 (Fibonacci(n),1),
A051601 (n,n) n>=0,
A051597 (n,n) n>0,
A051666 (n^2,n^2),
A071919 (1,0),
A074829 (Fibonacci(n), Fibonacci(n)),
A074909 (1,n),
A093560 (3,1),
A093561 (4,1),
A093562 (5,1),
A093563 (6,1),
A093564 (7,1),
A093565 (8,1),
A093644 (9,1),
A093645 (10,1),
A095660 (1,3),
A095666 (1,4),
A096940 (1,5),
A096956 (1,6),
A106516 (3^n,1),
A108561(1,(-1)^n),
A132200 (4,4),
A134636 (2n+1,2n+1),
A137688 (2^n,2^n),
A160760 (3^(n-1),1),
A164844(1,10^n),
A164847 (100^n,1),
A164855 (101*100^n,1),
A164866 (101^n,1),
A172171 (1,9),
A172185 (9,11),
A172283 (-9,11),
A177954 (int(n/2),1),
A193820 (1,2^n),
A214292 (n,-n),
A227074 (4^n,4^n),
A227075 (3^n,3^n),
A227076 (5^n,5^n),
A227550 (n!,n!),
A228053 ((-1)^n,(-1)^n),
A228074 (Fibonacci(n), n).
-
T:= function(n,k)
if k=0 then return n^2;
elif k=n then return 2^n;
else return T(n-1,k-1) + T(n-1,k);
fi;
end;
Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 12 2019
-
T:= proc(n, k) option remember;
if k=0 then n^2
elif k=n then 2^k
else T(n-1, k-1) + T(n-1, k)
fi
end:
seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Nov 12 2019
-
T[n_, k_]:= T[n, k] = If[k==0, n^2, If[k==n, 2^k, T[n-1, k-1] + T[n-1, k]]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 12 2019 *)
Flatten[Table[Sum[i^2 Binomial[n-1-i, n-k-i], {i,1,n-k}] + Sum[2^i Binomial[n-1-i, k-i], {i,1,k}], {n,0,10}, {k,0,n}]] (* Greg Dresden, Aug 06 2022 *)
-
T(n,k) = if(k==0, n^2, if(k==n, 2^k, T(n-1, k-1) + T(n-1, k) )); \\ G. C. Greubel, Nov 12 2019
-
def funcL(n):
q = n**2
return q
def funcR(n):
q = 2**n
return q
for n in range (1,9871):
t=int((math.sqrt(8*n-7) - 1)/ 2)
i=n-t*(t+1)/2-1
j=(t*t+3*t+4)/2-n-1
sum1=0
sum2=0
for m1 in range (1,i+1):
sum1=sum1+funcR(m1)*binomial(i+j-m1-1,i-m1)
for m2 in range (1,j+1):
sum2=sum2+funcL(m2)*binomial(i+j-m2-1,j-m2)
sum=sum1+sum2
-
@CachedFunction
def T(n, k):
if (k==0): return n^2
elif (k==n): return 2^n
else: return T(n-1, k-1) + T(n-1, k)
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 12 2019
A093645
(10,1) Pascal triangle.
Original entry on oeis.org
1, 10, 1, 10, 11, 1, 10, 21, 12, 1, 10, 31, 33, 13, 1, 10, 41, 64, 46, 14, 1, 10, 51, 105, 110, 60, 15, 1, 10, 61, 156, 215, 170, 75, 16, 1, 10, 71, 217, 371, 385, 245, 91, 17, 1, 10, 81, 288, 588, 756, 630, 336, 108, 18, 1, 10, 91, 369, 876, 1344, 1386, 966, 444, 126, 19, 1
Offset: 0
Triangle begins
1;
10, 1;
10, 11, 1;
10, 21, 12, 1;
...
- Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
- Ivo Schneider: Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch. 5, pp. 109-122.
Row sums: 1 for n=0 and
A005015(n-1), n >= 1, alternating row sums are 1 for n=0, 9 for n=2 and 0 otherwise.
-
a093645 n k = a093645_tabl !! n !! k
a093645_row n = a093645_tabl !! n
a093645_tabl = [1] : iterate
(\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [10, 1]
-- Reinhard Zumkeller, Aug 31 2014
-
t[0, 0] = 1; t[n_, k_] := Binomial[n, k] + 9*Binomial[n-1, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013, after Philippe Deléham *)
A093565
(8,1) Pascal triangle.
Original entry on oeis.org
1, 8, 1, 8, 9, 1, 8, 17, 10, 1, 8, 25, 27, 11, 1, 8, 33, 52, 38, 12, 1, 8, 41, 85, 90, 50, 13, 1, 8, 49, 126, 175, 140, 63, 14, 1, 8, 57, 175, 301, 315, 203, 77, 15, 1, 8, 65, 232, 476, 616, 518, 280, 92, 16, 1, 8, 73, 297, 708, 1092, 1134, 798, 372, 108, 17, 1, 8, 81, 370, 1005
Offset: 0
Triangle begins
[1];
[8, 1];
[8, 9, 1];
[8, 17, 10, 1];
...
- Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
- Ivo Schneider: Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch.5, pp. 109-122.
Row sums:
A005010(n-1), n>=1, 1 for n=0, alternating row sums are 1 for n=0, 7 for n=2 and 0 else.
A007586
11-gonal (or hendecagonal) pyramidal numbers: a(n) = n*(n+1)*(3*n-2)/2.
Original entry on oeis.org
0, 1, 12, 42, 100, 195, 336, 532, 792, 1125, 1540, 2046, 2652, 3367, 4200, 5160, 6256, 7497, 8892, 10450, 12180, 14091, 16192, 18492, 21000, 23725, 26676, 29862, 33292, 36975, 40920, 45136, 49632, 54417, 59500, 64890, 70596, 76627, 82992, 89700, 96760, 104181
Offset: 0
From _Vincenzo Librandi_, Feb 12 2014: (Start)
After 0, the sequence is provided by the row sums of the triangle (see above, third formula):
1;
2, 10;
3, 20, 19;
4, 30, 38, 28;
5, 40, 57, 56, 37;
6, 50, 76, 84, 74, 46; etc. (End)
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Cf.
A093644 ((9,1) Pascal, column m=3).
Cf. similar sequences listed in
A237616.
-
List([0..45], n-> n*(n+1)*(3*n-2)/2); # G. C. Greubel, Aug 30 2019
-
I:=[0,1,12,42]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4) : n in [1..50]]; // Vincenzo Librandi, Feb 12 2014
-
seq(n*(n+1)*(3*n-2)/2, n=0..45); # G. C. Greubel, Aug 30 2019
-
Table[n(n+1)(3n-2)/2,{n,0,45}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,1,12,42}, 45] (* Harvey P. Dale, Apr 09 2012 *)
CoefficientList[Series[x(1+8x)/(1-x)^4, {x, 0, 45}], x] (* Vincenzo Librandi, Feb 12 2014 *)
-
a(n)=n*(n+1)*(3*n-2)/2 \\ Charles R Greathouse IV, Oct 07 2015
-
[n*(n+1)*(3*n-2)/2 for n in (0..45)] # G. C. Greubel, Aug 30 2019
A022099
Fibonacci sequence beginning 1, 9.
Original entry on oeis.org
1, 9, 10, 19, 29, 48, 77, 125, 202, 327, 529, 856, 1385, 2241, 3626, 5867, 9493, 15360, 24853, 40213, 65066, 105279, 170345, 275624, 445969, 721593, 1167562, 1889155, 3056717, 4945872, 8002589, 12948461, 20951050, 33899511, 54850561, 88750072, 143600633, 232350705
Offset: 0
-
a0:=1; a1:=9; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]]; // Bruno Berselli, Feb 12 2013
-
LinearRecurrence[{1, 1}, {1, 9}, 36] (* Robert G. Wilson v, Apr 11 2014 *)
Showing 1-10 of 18 results.
Comments