A344377
Numbers that are both 11-gonal numbers (A051682) and 11-gonal pyramidal numbers (A007586).
Original entry on oeis.org
0, 1, 23725, 1519937678700, 7248070597636
Offset: 1
-
for(k=0, 1e5, if(ispolygonal(m=k*(k+1)*(3*k-2)/2, 11), print1(m", ")))
A051682
11-gonal (or hendecagonal) numbers: a(n) = n*(9*n-7)/2.
Original entry on oeis.org
0, 1, 11, 30, 58, 95, 141, 196, 260, 333, 415, 506, 606, 715, 833, 960, 1096, 1241, 1395, 1558, 1730, 1911, 2101, 2300, 2508, 2725, 2951, 3186, 3430, 3683, 3945, 4216, 4496, 4785, 5083, 5390, 5706, 6031, 6365, 6708, 7060, 7421, 7791, 8170
Offset: 0
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
- Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
[n*(9*n-7)/2 : n in [0..50]]; // Wesley Ivan Hurt, Aug 01 2015
-
Table[n (9n-7)/2,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,1,11},51] (* Harvey P. Dale, May 07 2012 *)
-
a(n)=(9*n-7)*n/2 \\ Charles R Greathouse IV, Jun 16 2011
A080851
Square array of pyramidal numbers, read by antidiagonals.
Original entry on oeis.org
1, 1, 3, 1, 4, 6, 1, 5, 10, 10, 1, 6, 14, 20, 15, 1, 7, 18, 30, 35, 21, 1, 8, 22, 40, 55, 56, 28, 1, 9, 26, 50, 75, 91, 84, 36, 1, 10, 30, 60, 95, 126, 140, 120, 45, 1, 11, 34, 70, 115, 161, 196, 204, 165, 55, 1, 12, 38, 80, 135, 196, 252, 288, 285, 220, 66, 1, 13, 42, 90, 155, 231, 308, 372, 405, 385, 286, 78
Offset: 0
Array begins (n>=0, k>=0):
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... A000217
1, 4, 10, 20, 35, 56, 84, 120, 165, 220, ... A000292
1, 5, 14, 30, 55, 91, 140, 204, 285, 385, ... A000330
1, 6, 18, 40, 75, 126, 196, 288, 405, 550, ... A002411
1, 7, 22, 50, 95, 161, 252, 372, 525, 715, ... A002412
1, 8, 26, 60, 115, 196, 308, 456, 645, 880, ... A002413
1, 9, 30, 70, 135, 231, 364, 540, 765, 1045, ... A002414
1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, ... A007584
See
A257199 for another version of this array.
-
vector(vector(poly_coeff(Taylor((1+kx)/(1-x)^4,x,11),x,n),n,0,11),k,-1,10) VECTOR(VECTOR(comb(k+2,2)+comb(k+2,3)n, k, 0, 11), n, 0, 11)
-
A080851 := proc(n,k)
binomial(k+3,3)+(n-1)*binomial(k+2,3) ;
end proc:
seq( seq(A080851(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Oct 01 2021
-
pyramidalFigurative[ ngon_, rank_] := (3 rank^2 + rank^3 (ngon - 2) - rank (ngon - 5))/6; Table[ pyramidalFigurative[n-k-1, k], {n, 4, 15}, {k, n-3}] // Flatten (* Robert G. Wilson v, Sep 15 2015 *)
A237616
a(n) = n*(n + 1)*(5*n - 4)/2.
Original entry on oeis.org
0, 1, 18, 66, 160, 315, 546, 868, 1296, 1845, 2530, 3366, 4368, 5551, 6930, 8520, 10336, 12393, 14706, 17290, 20160, 23331, 26818, 30636, 34800, 39325, 44226, 49518, 55216, 61335, 67890, 74896, 82368, 90321, 98770, 107730, 117216, 127243, 137826, 148980, 160720
Offset: 0
After 0, the sequence is provided by the row sums of the triangle:
1;
2, 16;
3, 32, 31;
4, 48, 62, 46;
5, 64, 93, 92, 61;
6, 80, 124, 138, 122, 76;
7, 96, 155, 184, 183, 152, 91;
8, 112, 186, 230, 244, 228, 182, 106;
9, 128, 217, 276, 305, 304, 273, 212, 121;
10, 144, 248, 322, 366, 380, 364, 318, 242, 136; etc.,
where (r = row index, c = column index):
T(r,r) = T(c,c) = 15*r-14 and T(r,c) = T(r-1,c)+T(r,r) = (r-c+1)*T(r,r), with r>=c>0.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (fifteenth row of the table).
Cf. sequences with formula n*(n+1)*(k*n-k+3)/6:
A000217 (k=0),
A000292 (k=1),
A000330 (k=2),
A002411 (k=3),
A002412 (k=4),
A002413 (k=5),
A002414 (k=6),
A007584 (k=7),
A007585 (k=8),
A007586 (k=9),
A007587 (k=10),
A050441 (k=11),
A172073 (k=12),
A177890 (k=13),
A172076 (k=14), this sequence (k=15),
A172078(k=16),
A237617 (k=17),
A172082 (k=18),
A237618 (k=19),
A172117(k=20),
A256718 (k=21),
A256716 (k=22),
A256645 (k=23),
A256646(k=24),
A256647 (k=25),
A256648 (k=26),
A256649 (k=27),
A256650(k=28).
-
List([0..40], n-> n*(n+1)*(5*n-4)/2); # G. C. Greubel, Aug 30 2019
-
[n*(n+1)*(5*n-4)/2: n in [0..40]];
-
I:=[0,1,18,66]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Feb 12 2014
-
seq(n*(n+1)*(5*n-4)/2, n=0..40); # G. C. Greubel, Aug 30 2019
-
Table[n(n+1)(5n-4)/2, {n, 0, 40}]
CoefficientList[Series[x (1+14x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
LinearRecurrence[{4,-6,4,-1},{0,1,18,66},50] (* Harvey P. Dale, Jan 11 2015 *)
-
a(n)=n*(n+1)*(5*n-4)/2 \\ Charles R Greathouse IV, Sep 24 2015
-
[n*(n+1)*(5*n-4)/2 for n in (0..40)] # G. C. Greubel, Aug 30 2019
A093644
(9,1) Pascal triangle.
Original entry on oeis.org
1, 9, 1, 9, 10, 1, 9, 19, 11, 1, 9, 28, 30, 12, 1, 9, 37, 58, 42, 13, 1, 9, 46, 95, 100, 55, 14, 1, 9, 55, 141, 195, 155, 69, 15, 1, 9, 64, 196, 336, 350, 224, 84, 16, 1, 9, 73, 260, 532, 686, 574, 308, 100, 17, 1, 9, 82, 333, 792, 1218, 1260, 882, 408, 117, 18, 1, 9, 91, 415
Offset: 0
Triangle begins
[1];
[9, 1];
[9, 10, 1];
[9, 19, 11, 1];
...
- Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
- Ivo Schneider: Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch.5, pp. 109-122.
Row sums:
A020714(n-1), n >= 1, 1 for n=0, alternating row sums are 1 for n=0, 8 for n=2 and 0 otherwise.
-
a093644 n k = a093644_tabl !! n !! k
a093644_row n = a093644_tabl !! n
a093644_tabl = [1] : iterate
(\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [9, 1]
-- Reinhard Zumkeller, Aug 31 2014
-
Join[{1},Table[Binomial[n,k]+8Binomial[n-1,k],{n,20},{k,0,n}]//Flatten] (* Harvey P. Dale, Aug 17 2024 *)
A051798
a(n) = (n+1)*(n+2)*(n+3)*(9n+4)/24.
Original entry on oeis.org
1, 13, 55, 155, 350, 686, 1218, 2010, 3135, 4675, 6721, 9373, 12740, 16940, 22100, 28356, 35853, 44745, 55195, 67375, 81466, 97658, 116150, 137150, 160875, 187551, 217413, 250705, 287680, 328600, 373736, 423368, 477785, 537285
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.
- Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-8.
Cf.
A093644 ((9, 1) Pascal, column m=4).
Cf.
A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers.
-
/* A000027 convolved with A051682 (excluding 0): */ A051682:=func; [&+[(n-i+1)*A051682(i): i in [1..n]]: n in [1..35]]; // Bruno Berselli, Dec 07 2012
-
Table[(n+1)(n+2)(n+3)(9n+4)/24,{n,0,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{1,13,55,155,350},40] (* Harvey P. Dale, Aug 19 2012 *)
-
a(n)=(n+1)*(n+2)*(n+3)*(9*n+4)/24 \\ Charles R Greathouse IV, Oct 07 2015
A131104
Rectangular array read by antidiagonals: a(n, k) is the number of ways to put k labeled objects into n labeled boxes so that there is one box with exactly one object (n, k >= 1).
Original entry on oeis.org
1, 2, 0, 3, 0, 0, 4, 0, 6, 0, 5, 0, 18, 8, 0, 6, 0, 36, 24, 10, 0, 7, 0, 60, 48, 120, 12, 0, 8, 0, 90, 80, 420, 396, 14, 0, 9, 0, 126, 120, 1000, 1512, 1092, 16, 0, 10, 0, 168, 168, 1950, 3720, 6804, 2736, 18, 0, 11, 0, 216, 224, 3360, 7380, 23240, 31008, 6480, 20, 0, 12, 0
Offset: 1
Array begins:
1 0 0 0 0 0 0
2 0 6 8 10 12 14
3 0 18 24 120 396 1092
A104728
Triangle T(n,k) = (k-1-n)*(k-2-n)*(k-2+2*n)/2 read by rows, 1<=k<=n.
Original entry on oeis.org
1, 9, 4, 30, 18, 7, 70, 48, 27, 10, 135, 100, 66, 36, 13, 231, 180, 130, 84, 45, 16, 364, 294, 225, 160, 102, 54, 19, 540, 448, 357, 270, 190, 120, 63, 22, 765, 648, 532, 420, 315, 220, 138, 72, 25, 1045, 900, 756, 616, 483, 360, 250, 156, 81, 28, 1386, 1210, 1035, 864, 700, 546, 405, 280, 174, 90, 31
Offset: 1
The first few rows of the triangle are:
1;
9, 4;
30, 18, 7;
70, 48, 27, 10;
135, 100, 66, 36, 13;
231, 180, 130, 84, 45, 16;
364, 294, 225, 160, 102, 54, 19;
540, 448, 357, 270, 190, 120, 63, 22;
765, 648, 532, 420, 315, 220, 138, 72, 25;
1045, 900, 756, 616, 483, 360, 250, 156, 81, 28;
1386, 1210, 1035, 864, 700, 546, 405, 280, 174, 90, 31;
1794, 1584, 1375, 1170, 972, 784, 609, 450, 310, 192, 99, 34, etc.
-
A104728 := proc(n)
(k-1-n)*(k-2-n)*(k-2+2*n)/2 ;
end proc:
seq(seq(A104728(n,k),k=1..n),n=1..14) ; # R. J. Mathar, Nov 07 2011
-
Table[(k-1-n)(k-2-n)(k-2+2n)/2,{n,20},{k,n}]//Flatten (* Harvey P. Dale, Dec 25 2018 *)
A266087
Alternating sum of 11-gonal (or hendecagonal) numbers.
Original entry on oeis.org
0, -1, 10, -20, 38, -57, 84, -112, 148, -185, 230, -276, 330, -385, 448, -512, 584, -657, 738, -820, 910, -1001, 1100, -1200, 1308, -1417, 1534, -1652, 1778, -1905, 2040, -2176, 2320, -2465, 2618, -2772, 2934, -3097, 3268, -3440, 3620, -3801, 3990, -4180
Offset: 0
-
[(18*(-1)^n*n^2 + 4*(-1)^n*n - 7*(-1)^n + 7)/8: n in [0..50]]; // Vincenzo Librandi, Dec 21 2015
-
Table[((18 n^2 + 4 n - 7) (-1)^n + 7)/8, {n, 0, 43}]
CoefficientList[Series[(x - 8 x^2)/(x^4 + 2 x^3 - 2 x - 1), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 21 2015 *)
Accumulate[Times@@@Partition[Riffle[PolygonalNumber[11,Range[0,50]],{1,-1},{2,-1,2}],2]] (* Requires Mathematica version 10 or later *) (* or *) LinearRecurrence[{-2,0,2,1},{0,-1,10,-20},50] (* Harvey P. Dale, Aug 27 2019 *)
-
x='x+O('x^100); concat(0, Vec(-x*(1-8*x)/((1-x)*(1+x)^3))) \\ Altug Alkan, Dec 21 2015
A292999
Triangle read by rows: T(n,k) (n >= 1, 4 <= k <= n+3) is the number of k-sequences of balls colored with at most n colors such that exactly four balls are the same color as some other ball in the sequence.
Original entry on oeis.org
1, 8, 10, 21, 120, 90, 40, 420, 1440, 840, 65, 1000, 6300, 16800, 8400, 96, 1950, 18000, 88200, 201600, 90720, 133, 3360, 40950, 294000, 1234800, 2540160, 1058400, 176, 5320, 80640, 764400, 4704000, 17781120, 33868800, 13305600, 225, 7920, 143640, 1693440, 13759200, 76204800, 266716800, 479001600, 179625600
Offset: 1
For n=1: AAAA -> T(1,4)=1.
For n=2: AAAA,BBBB,AABB,ABAB,ABBA,BAAB,BABA,BBAA -> T(2,4)=8; AAAAB,AAABA,AABAA,ABAAA,BAAAA,BBBBA,BBBAB,BBABB,BABBB,ABBBB -> T(2,5)=10.
Triangle starts:
1;
8, 10;
21, 120, 90;
40, 420, 1440, 840;
65, 1000, 6300, 16800, 8400;
96, 1950, 18000, 88200, 201600, 90720;
133, 3360, 40950, 294000, 1234800, 2540160, 1058400;
176, 5320, 80640, 764400, 4704000, 17781120, 33868800, 13305600;
225, 7920, 143640, 1693440, 13759200, 76204800, 266716800, ... .
Diagonals of the table: T(n,n+3) =
A061206(n), T(n+1,n+3) = 8*
A005461(n), T(n-1,n) = 21*
A001755(n), T(n,n) = 40*
A001811(n), T(n,n-1) = 65*
A001777(n), T(n+6,n+4) =
A062194(n).
-
Table[Binomial[k, 4] n! (1/(n + 3 - k)! + 3/(n + 2 - k)!), {n, 9}, {k, 4, n + 3}] // Flatten (* Michael De Vlieger, Sep 30 2017 *)
Showing 1-10 of 10 results.
Comments