cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A344377 Numbers that are both 11-gonal numbers (A051682) and 11-gonal pyramidal numbers (A007586).

Original entry on oeis.org

0, 1, 23725, 1519937678700, 7248070597636
Offset: 1

Views

Author

Seiichi Manyama, May 17 2021

Keywords

Comments

Intersection of A051682 and A007586.

Crossrefs

Programs

  • PARI
    for(k=0, 1e5, if(ispolygonal(m=k*(k+1)*(3*k-2)/2, 11), print1(m", ")))

A051682 11-gonal (or hendecagonal) numbers: a(n) = n*(9*n-7)/2.

Original entry on oeis.org

0, 1, 11, 30, 58, 95, 141, 196, 260, 333, 415, 506, 606, 715, 833, 960, 1096, 1241, 1395, 1558, 1730, 1911, 2101, 2300, 2508, 2725, 2951, 3186, 3430, 3683, 3945, 4216, 4496, 4785, 5083, 5390, 5706, 6031, 6365, 6708, 7060, 7421, 7791, 8170
Offset: 0

Views

Author

Keywords

Comments

From Floor van Lamoen, Jul 21 2001: (Start)
Write 0,1,2,3,4,... in a triangular spiral, then a(n) is the sequence found by reading the line from 0 in the direction 0,1,...
The spiral begins:
15
/ \
16 14
/ \
17 3 13
/ / \ \
18 4 2 12
/ \ \
5 0---1 11
/ \
6---7---8---9--10
. (End)
(1), (4+7), (7+10+13), (10+13+16+19), ... - Jon Perry, Sep 10 2004
This sequence does not contain any triangular numbers other than 0 and 1. See A188892. - T. D. Noe, Apr 13 2011
Sequence found by reading the line from 0, in the direction 0, 11, ... and the parallel line from 1, in the direction 1, 30, ..., in the square spiral whose vertices are the generalized 11-gonal numbers A195160. - Omar E. Pol, Jul 18 2012
Starting with offset 1, the sequence is the binomial transform of (1, 10, 9, 0, 0, 0, ...). - Gary W. Adamson, Aug 01 2015

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
  • Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.

Crossrefs

First differences of A007586.
Cf. A093644 ((9, 1) Pascal, column m=2). Partial sums of A017173.

Programs

Formula

a(n) = n*(9*n-7)/2.
G.f.: x*(1+8*x)/(1-x)^3.
Row sums of triangle A131432. - Gary W. Adamson, Jul 10 2007
a(n) = 9*n + a(n-1) - 8 (with a(0)=0). - Vincenzo Librandi, Aug 06 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=0, a(1)=1, a(2)=11. - Harvey P. Dale, May 07 2012
a(n) = A218470(9n). - Philippe Deléham, Mar 27 2013
a(9*a(n)+37*n+1) = a(9*a(n)+37*n) + a(9*n+1). - Vladimir Shevelev, Jan 24 2014
a(n+y) - a(n-y-1) = (a(n+x) - a(n-x-1))*(2*y+1)/(2*x+1), 0 <= x < n, y <= x, a(0)=0. - Gionata Neri, May 03 2015
a(n) = A000217(n-1) + A000217(3*n-2) - A000217(n-2). - Charlie Marion, Dec 21 2019
Product_{n>=2} (1 - 1/a(n)) = 9/11. - Amiram Eldar, Jan 21 2021
E.g.f.: exp(x)*x*(2 + 9*x)/2. - Stefano Spezia, Dec 25 2022

A080851 Square array of pyramidal numbers, read by antidiagonals.

Original entry on oeis.org

1, 1, 3, 1, 4, 6, 1, 5, 10, 10, 1, 6, 14, 20, 15, 1, 7, 18, 30, 35, 21, 1, 8, 22, 40, 55, 56, 28, 1, 9, 26, 50, 75, 91, 84, 36, 1, 10, 30, 60, 95, 126, 140, 120, 45, 1, 11, 34, 70, 115, 161, 196, 204, 165, 55, 1, 12, 38, 80, 135, 196, 252, 288, 285, 220, 66, 1, 13, 42, 90, 155, 231, 308, 372, 405, 385, 286, 78
Offset: 0

Views

Author

Paul Barry, Feb 21 2003

Keywords

Comments

The first row contains the triangular numbers, which are really two-dimensional, but can be regarded as degenerate pyramidal numbers. - N. J. A. Sloane, Aug 28 2015

Examples

			Array begins (n>=0, k>=0):
1,  3,  6, 10,  15,  21,  28,  36,  45,   55, ... A000217
1,  4, 10, 20,  35,  56,  84, 120, 165,  220, ... A000292
1,  5, 14, 30,  55,  91, 140, 204, 285,  385, ... A000330
1,  6, 18, 40,  75, 126, 196, 288, 405,  550, ... A002411
1,  7, 22, 50,  95, 161, 252, 372, 525,  715, ... A002412
1,  8, 26, 60, 115, 196, 308, 456, 645,  880, ... A002413
1,  9, 30, 70, 135, 231, 364, 540, 765, 1045, ... A002414
1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, ... A007584
		

Crossrefs

Numerous sequences in the database are to be found in the array. Rows include the pyramidal numbers A000217, A000292, A000330, A002411, A002412, A002413, A002414, A007584, A007585, A007586.
Columns include or are closely related to A017029, A017113, A017017, A017101, A016777, A017305. Diagonals include A006325, A006484, A002417.
Cf. A057145, A027660 (antidiagonal sums).
See A257199 for another version of this array.

Programs

  • Derive
    vector(vector(poly_coeff(Taylor((1+kx)/(1-x)^4,x,11),x,n),n,0,11),k,-1,10) VECTOR(VECTOR(comb(k+2,2)+comb(k+2,3)n, k, 0, 11), n, 0, 11)
  • Maple
    A080851 := proc(n,k)
        binomial(k+3,3)+(n-1)*binomial(k+2,3) ;
    end proc:
    seq( seq(A080851(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Oct 01 2021
  • Mathematica
    pyramidalFigurative[ ngon_, rank_] := (3 rank^2 + rank^3 (ngon - 2) - rank (ngon - 5))/6; Table[ pyramidalFigurative[n-k-1, k], {n, 4, 15}, {k, n-3}] // Flatten (* Robert G. Wilson v, Sep 15 2015 *)

Formula

T(n, k) = binomial(k+3, 3) + (n-1)*binomial(k+2, 3), corrected Oct 01 2021.
T(n, k) = T(n-1, k) + C(k+2, 3) = T(n-1, k) + k*(k+1)*(k+2)/6.
G.f. for rows: (1 + n*x)/(1-x)^4, n>=-1.
T(n,k) = sum_{j=1..k+1} A057145(n+2,j). - R. J. Mathar, Jul 28 2016

A237616 a(n) = n*(n + 1)*(5*n - 4)/2.

Original entry on oeis.org

0, 1, 18, 66, 160, 315, 546, 868, 1296, 1845, 2530, 3366, 4368, 5551, 6930, 8520, 10336, 12393, 14706, 17290, 20160, 23331, 26818, 30636, 34800, 39325, 44226, 49518, 55216, 61335, 67890, 74896, 82368, 90321, 98770, 107730, 117216, 127243, 137826, 148980, 160720
Offset: 0

Views

Author

Bruno Berselli, Feb 10 2014

Keywords

Comments

Also 17-gonal (or heptadecagonal) pyramidal numbers.
This sequence is related to A226489 by 2*a(n) = n*A226489(n) - Sum_{i=0..n-1} A226489(i).

Examples

			After 0, the sequence is provided by the row sums of the triangle:
   1;
   2,  16;
   3,  32,  31;
   4,  48,  62,  46;
   5,  64,  93,  92,  61;
   6,  80, 124, 138, 122,  76;
   7,  96, 155, 184, 183, 152,  91;
   8, 112, 186, 230, 244, 228, 182, 106;
   9, 128, 217, 276, 305, 304, 273, 212, 121;
  10, 144, 248, 322, 366, 380, 364, 318, 242, 136; etc.,
where (r = row index, c = column index):
T(r,r) = T(c,c) = 15*r-14 and T(r,c) = T(r-1,c)+T(r,r) = (r-c+1)*T(r,r), with r>=c>0.
		

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (fifteenth row of the table).

Crossrefs

Cf. sequences with formula n*(n+1)*(k*n-k+3)/6: A000217 (k=0), A000292 (k=1), A000330 (k=2), A002411 (k=3), A002412 (k=4), A002413 (k=5), A002414 (k=6), A007584 (k=7), A007585 (k=8), A007586 (k=9), A007587 (k=10), A050441 (k=11), A172073 (k=12), A177890 (k=13), A172076 (k=14), this sequence (k=15), A172078(k=16), A237617 (k=17), A172082 (k=18), A237618 (k=19), A172117(k=20), A256718 (k=21), A256716 (k=22), A256645 (k=23), A256646(k=24), A256647 (k=25), A256648 (k=26), A256649 (k=27), A256650(k=28).

Programs

  • GAP
    List([0..40], n-> n*(n+1)*(5*n-4)/2); # G. C. Greubel, Aug 30 2019
  • Magma
    [n*(n+1)*(5*n-4)/2: n in [0..40]];
    
  • Magma
    I:=[0,1,18,66]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Feb 12 2014
    
  • Maple
    seq(n*(n+1)*(5*n-4)/2, n=0..40); # G. C. Greubel, Aug 30 2019
  • Mathematica
    Table[n(n+1)(5n-4)/2, {n, 0, 40}]
    CoefficientList[Series[x (1+14x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
    LinearRecurrence[{4,-6,4,-1},{0,1,18,66},50] (* Harvey P. Dale, Jan 11 2015 *)
  • PARI
    a(n)=n*(n+1)*(5*n-4)/2 \\ Charles R Greathouse IV, Sep 24 2015
    
  • Sage
    [n*(n+1)*(5*n-4)/2 for n in (0..40)] # G. C. Greubel, Aug 30 2019
    

Formula

G.f.: x*(1 + 14*x)/(1 - x)^4.
For n>0, a(n) = Sum_{i=0..n-1} (n-i)*(15*i+1). More generally, the sequence with the closed form n*(n+1)*(k*n-k+3)/6 is also given by Sum_{i=0..n-1} (n-i)*(k*i+1) for n>0.
a(n) = A104728(A001844(n-1)) for n>0.
Sum_{n>=1} 1/a(n) = (2*sqrt(5*(5 + 2*sqrt(5)))*Pi + 10*sqrt(5)*arccoth(sqrt(5)) + 25*log(5) - 16)/72 = 1.086617842136293176... . - Vaclav Kotesovec, Dec 07 2016
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n >= 4. - Wesley Ivan Hurt, Dec 18 2020
E.g.f.: exp(x)*x*(2 + 16*x + 5*x^2)/2. - Elmo R. Oliveira, Aug 04 2025

A093644 (9,1) Pascal triangle.

Original entry on oeis.org

1, 9, 1, 9, 10, 1, 9, 19, 11, 1, 9, 28, 30, 12, 1, 9, 37, 58, 42, 13, 1, 9, 46, 95, 100, 55, 14, 1, 9, 55, 141, 195, 155, 69, 15, 1, 9, 64, 196, 336, 350, 224, 84, 16, 1, 9, 73, 260, 532, 686, 574, 308, 100, 17, 1, 9, 82, 333, 792, 1218, 1260, 882, 408, 117, 18, 1, 9, 91, 415
Offset: 0

Views

Author

Wolfdieter Lang, Apr 22 2004

Keywords

Comments

The array F(9;n,m) gives in the columns m>=1 the figurate numbers based on A017173, including the 11-gonal numbers A051682 (see the W. Lang link).
This is the ninth member, d=9, in the family of triangles of figurate numbers, called (d,1) Pascal triangles: A007318 (Pascal), A029653, A093560-5, for d=1..8.
This is an example of a Riordan triangle (see A093560 for a comment and A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group). Therefore the o.g.f. for the row polynomials p(n,x) := Sum_{m=0..n} a(n,m)*x^m is G(z,x) = (1+8*z)/(1-(1+x)*z).
The SW-NE diagonals give A022099(n-1) = Sum_{k=0..ceiling((n-1)/2)} a(n-1-k,k), n >= 1, with n=0 value 8. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
Triangle T(n,k), read by rows, given by (9,-8,0,0,0,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 10 2011

Examples

			Triangle begins
  [1];
  [9,  1];
  [9, 10,  1];
  [9, 19, 11,  1];
  ...
		

References

  • Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
  • Ivo Schneider: Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch.5, pp. 109-122.

Crossrefs

Row sums: A020714(n-1), n >= 1, 1 for n=0, alternating row sums are 1 for n=0, 8 for n=2 and 0 otherwise.
The column sequences give for m=1..9: A017173, A051682 (11-gonal), A007586, A051798, A051879, A050405, A052206, A056117, A056003.
Cf. A093645 (d=10).

Programs

  • Haskell
    a093644 n k = a093644_tabl !! n !! k
    a093644_row n = a093644_tabl !! n
    a093644_tabl = [1] : iterate
                   (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [9, 1]
    -- Reinhard Zumkeller, Aug 31 2014
  • Mathematica
    Join[{1},Table[Binomial[n,k]+8Binomial[n-1,k],{n,20},{k,0,n}]//Flatten] (* Harvey P. Dale, Aug 17 2024 *)

Formula

a(n, m) = F(9;n-m, m) for 0 <= m <= n, otherwise 0, with F(9;0, 0)=1, F(9;n, 0)=9 if n >= 1 and F(9;n, m):=(9*n+m)*binomial(n+m-1, m-1)/m if m >= 1.
Recursion: a(n, m)=0 if m > n, a(0, 0)= 1; a(n, 0)=9 if n >= 1; a(n, m) = a(n-1, m) + a(n-1, m-1).
G.f. column m (without leading zeros): (1+8*x)/(1-x)^(m+1), m >= 0.
T(n, k) = C(n, k) + 8*C(n-1, k). - Philippe Deléham, Aug 28 2005
Row n: Expansion of (9+x)*(1+x)^(n-1), n > 0. - Philippe Deléham, Oct 10 2011
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(9 + 19*x + 11*x^2/2! + x^3/3!) = 9 + 28*x + 58*x^2/2! + 100*x^3/3! + 155*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 22 2014
G.f.: (-1-8*x)/(-1+x+x*y). - R. J. Mathar, Aug 11 2015

A051798 a(n) = (n+1)*(n+2)*(n+3)*(9n+4)/24.

Original entry on oeis.org

1, 13, 55, 155, 350, 686, 1218, 2010, 3135, 4675, 6721, 9373, 12740, 16940, 22100, 28356, 35853, 44745, 55195, 67375, 81466, 97658, 116150, 137150, 160875, 187551, 217413, 250705, 287680, 328600, 373736, 423368, 477785, 537285
Offset: 0

Views

Author

Barry E. Williams, Dec 11 1999

Keywords

Comments

Partial sums of A007586.
Convolution of A000027 with A051682 (excluding 0). - Bruno Berselli, Dec 07 2012

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
  • Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.
  • Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-8.

Crossrefs

Cf. A093644 ((9, 1) Pascal, column m=4).
Cf. A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers.

Programs

Formula

a(n) = C(n+3, 3)*(9*n+4)/4.
G.f.: (1+8*x)/(1-x)^5.
a(0)=1, a(1)=13, a(2)=55, a(3)=155, a(4)=350, a(n)=5*a(n-1)- 10*a(n-2)+ 10*a(n-3)-5*a(n-4)+a(n-5). - Harvey P. Dale, Aug 19 2012
a(n) = A080852(9,n). - R. J. Mathar, Jul 28 2016

A131104 Rectangular array read by antidiagonals: a(n, k) is the number of ways to put k labeled objects into n labeled boxes so that there is one box with exactly one object (n, k >= 1).

Original entry on oeis.org

1, 2, 0, 3, 0, 0, 4, 0, 6, 0, 5, 0, 18, 8, 0, 6, 0, 36, 24, 10, 0, 7, 0, 60, 48, 120, 12, 0, 8, 0, 90, 80, 420, 396, 14, 0, 9, 0, 126, 120, 1000, 1512, 1092, 16, 0, 10, 0, 168, 168, 1950, 3720, 6804, 2736, 18, 0, 11, 0, 216, 224, 3360, 7380, 23240, 31008, 6480, 20, 0, 12, 0
Offset: 1

Views

Author

David Wasserman, Jun 14 2007, Jun 15 2007

Keywords

Comments

Problem suggested by Brandon Zeidler. Columns 3 through 5 are A028896, A033996, 10*A007586.

Examples

			Array begins:
1 0 0 0 0 0 0
2 0 6 8 10 12 14
3 0 18 24 120 396 1092
		

Crossrefs

Formula

a(n, 1) = n. For k > 1, a(n, k) = sum_{j=1..min(floor((k-1)/2), n-1)} A008299(k-1, j)*n!*k*/(n-j-1)!.

A104728 Triangle T(n,k) = (k-1-n)*(k-2-n)*(k-2+2*n)/2 read by rows, 1<=k<=n.

Original entry on oeis.org

1, 9, 4, 30, 18, 7, 70, 48, 27, 10, 135, 100, 66, 36, 13, 231, 180, 130, 84, 45, 16, 364, 294, 225, 160, 102, 54, 19, 540, 448, 357, 270, 190, 120, 63, 22, 765, 648, 532, 420, 315, 220, 138, 72, 25, 1045, 900, 756, 616, 483, 360, 250, 156, 81, 28, 1386, 1210, 1035, 864, 700, 546, 405, 280, 174, 90, 31
Offset: 1

Views

Author

Gary W. Adamson, Mar 20 2005

Keywords

Comments

The triangle is defined as the matrix product A * B, A = [1; 1, 4; 1, 4, 7;...]; B = [1; 2, 1; 3, 2, 1;...]; both infinite lower triangular matrices with the rest of the terms zeros.

Examples

			The first few rows of the triangle are:
1;
9,    4;
30,   18,   7;
70,   48,   27,   10;
135,  100,  66,   36,   13;
231,  180,  130,  84,   45,  16;
364,  294,  225,  160,  102, 54,  19;
540,  448,  357,  270,  190, 120, 63,  22;
765,  648,  532,  420,  315, 220, 138, 72,  25;
1045, 900,  756,  616,  483, 360, 250, 156, 81,  28;
1386, 1210, 1035, 864,  700, 546, 405, 280, 174, 90,  31;
1794, 1584, 1375, 1170, 972, 784, 609, 450, 310, 192, 99, 34, etc.
		

Crossrefs

Cf. A051798 (row sums), A007586, A002414 (column 1).

Programs

  • Maple
    A104728 := proc(n)
            (k-1-n)*(k-2-n)*(k-2+2*n)/2 ;
    end proc:
    seq(seq(A104728(n,k),k=1..n),n=1..14) ; # R. J. Mathar, Nov 07 2011
  • Mathematica
    Table[(k-1-n)(k-2-n)(k-2+2n)/2,{n,20},{k,n}]//Flatten (* Harvey P. Dale, Dec 25 2018 *)

Extensions

Name contributed by R. J. Mathar, Nov 07 2011

A266087 Alternating sum of 11-gonal (or hendecagonal) numbers.

Original entry on oeis.org

0, -1, 10, -20, 38, -57, 84, -112, 148, -185, 230, -276, 330, -385, 448, -512, 584, -657, 738, -820, 910, -1001, 1100, -1200, 1308, -1417, 1534, -1652, 1778, -1905, 2040, -2176, 2320, -2465, 2618, -2772, 2934, -3097, 3268, -3440, 3620, -3801, 3990, -4180
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 21 2015

Keywords

Crossrefs

Programs

  • Magma
    [(18*(-1)^n*n^2 + 4*(-1)^n*n - 7*(-1)^n + 7)/8: n in [0..50]]; // Vincenzo Librandi, Dec 21 2015
    
  • Mathematica
    Table[((18 n^2 + 4 n - 7) (-1)^n + 7)/8, {n, 0, 43}]
    CoefficientList[Series[(x - 8 x^2)/(x^4 + 2 x^3 - 2 x - 1), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 21 2015 *)
    Accumulate[Times@@@Partition[Riffle[PolygonalNumber[11,Range[0,50]],{1,-1},{2,-1,2}],2]] (* Requires Mathematica version 10 or later *) (* or *) LinearRecurrence[{-2,0,2,1},{0,-1,10,-20},50] (* Harvey P. Dale, Aug 27 2019 *)
  • PARI
    x='x+O('x^100); concat(0, Vec(-x*(1-8*x)/((1-x)*(1+x)^3))) \\ Altug Alkan, Dec 21 2015

Formula

G.f.: -x*(1 - 8*x)/((1 - x)*(1 + x)^3).
a(n) = ((18*n^2 + 4*n - 7)*(-1)^n + 7)/8.
a(n) = Sum_{k = 0..n} (-1)^k*A051682(k).
Lim_{n -> infinity} a(n + 1)/a(n) = -1.
E.g.f.: (1/4)*(9*x^2 - 11*x)*cosh(x) - (1/4)*(9*x^2 - 11*x - 7)*sinh(x). - G. C. Greubel, Jan 27 2016

A292999 Triangle read by rows: T(n,k) (n >= 1, 4 <= k <= n+3) is the number of k-sequences of balls colored with at most n colors such that exactly four balls are the same color as some other ball in the sequence.

Original entry on oeis.org

1, 8, 10, 21, 120, 90, 40, 420, 1440, 840, 65, 1000, 6300, 16800, 8400, 96, 1950, 18000, 88200, 201600, 90720, 133, 3360, 40950, 294000, 1234800, 2540160, 1058400, 176, 5320, 80640, 764400, 4704000, 17781120, 33868800, 13305600, 225, 7920, 143640, 1693440, 13759200, 76204800, 266716800, 479001600, 179625600
Offset: 1

Views

Author

Jeremy Dover, Sep 27 2017

Keywords

Examples

			For n=1: AAAA -> T(1,4)=1.
For n=2: AAAA,BBBB,AABB,ABAB,ABBA,BAAB,BABA,BBAA -> T(2,4)=8; AAAAB,AAABA,AABAA,ABAAA,BAAAA,BBBBA,BBBAB,BBABB,BABBB,ABBBB -> T(2,5)=10.
Triangle starts:
    1;
    8,   10;
   21,  120,     90;
   40,  420,   1440,     840;
   65, 1000,   6300,   16800,     8400;
   96, 1950,  18000,   88200,   201600,    90720;
  133, 3360,  40950,  294000,  1234800,  2540160,   1058400;
  176, 5320,  80640,  764400,  4704000, 17781120,  33868800, 13305600;
  225, 7920, 143640, 1693440, 13759200, 76204800, 266716800, ... .
		

Crossrefs

Columns of the table: T(n,4) = A000567(n), T(n,5) = 10*A007586(n-1), T(n,6) = 90*A220212(n-2).
Diagonals of the table: T(n,n+3) = A061206(n), T(n+1,n+3) = 8*A005461(n), T(n-1,n) = 21*A001755(n), T(n,n) = 40*A001811(n), T(n,n-1) = 65*A001777(n), T(n+6,n+4) = A062194(n).

Programs

  • Mathematica
    Table[Binomial[k, 4] n! (1/(n + 3 - k)! + 3/(n + 2 - k)!), {n, 9}, {k, 4, n + 3}] // Flatten (* Michael De Vlieger, Sep 30 2017 *)

Formula

a(n) = binomial(k,4)*n!*(1/(n+3-k)! + 3/(n+2-k)!) (with the convention that 3/(-1)! = 0 when k=n+3).
Showing 1-10 of 10 results.