Original entry on oeis.org
1, 14, 69, 224, 574, 1260, 2478, 4488, 7623, 12298, 19019, 28392, 41132, 58072, 80172, 108528, 144381, 189126, 244321, 311696, 393162, 490820, 606970, 744120, 904995, 1092546, 1309959, 1560664
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-16.
Cf.
A093644((9, 1) Pascal, column m=5).
-
Accumulate[Table[(n+1)(n+2)(n+3)(9n+4)/24,{n,0,40}]] (* Harvey P. Dale, Aug 19 2012 *)
A093644
(9,1) Pascal triangle.
Original entry on oeis.org
1, 9, 1, 9, 10, 1, 9, 19, 11, 1, 9, 28, 30, 12, 1, 9, 37, 58, 42, 13, 1, 9, 46, 95, 100, 55, 14, 1, 9, 55, 141, 195, 155, 69, 15, 1, 9, 64, 196, 336, 350, 224, 84, 16, 1, 9, 73, 260, 532, 686, 574, 308, 100, 17, 1, 9, 82, 333, 792, 1218, 1260, 882, 408, 117, 18, 1, 9, 91, 415
Offset: 0
Triangle begins
[1];
[9, 1];
[9, 10, 1];
[9, 19, 11, 1];
...
- Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
- Ivo Schneider: Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch.5, pp. 109-122.
Row sums:
A020714(n-1), n >= 1, 1 for n=0, alternating row sums are 1 for n=0, 8 for n=2 and 0 otherwise.
-
a093644 n k = a093644_tabl !! n !! k
a093644_row n = a093644_tabl !! n
a093644_tabl = [1] : iterate
(\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [9, 1]
-- Reinhard Zumkeller, Aug 31 2014
-
Join[{1},Table[Binomial[n,k]+8Binomial[n-1,k],{n,20},{k,0,n}]//Flatten] (* Harvey P. Dale, Aug 17 2024 *)
A220212
Convolution of natural numbers (A000027) with tetradecagonal numbers (A051866).
Original entry on oeis.org
0, 1, 16, 70, 200, 455, 896, 1596, 2640, 4125, 6160, 8866, 12376, 16835, 22400, 29240, 37536, 47481, 59280, 73150, 89320, 108031, 129536, 154100, 182000, 213525, 248976, 288666, 332920, 382075, 436480, 496496, 562496, 634865, 714000, 800310, 894216, 996151
Offset: 0
Cf. convolution of the natural numbers (
A000027) with the k-gonal numbers (* means "except 0"):
Cf. similar sequences with formula n*(n+1)*(n+2)*(k*n-k+2)/12 listed in
A264850.
-
A051866:=func; [&+[(n-k+1)*A051866(k): k in [0..n]]: n in [0..37]];
-
I:=[0,1,16,70,200]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
-
A051866[k_] := k (6 k - 5); Table[Sum[(n - k + 1) A051866[k], {k, 0, n}], {n, 0, 37}]
CoefficientList[Series[x (1 + 11 x) / (1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2013 *)
A088941
a(n)=12*sum(1<=i<=j<=k<=n,i*j/k).
Original entry on oeis.org
0, 12, 54, 154, 349, 685, 1217, 2009, 3134, 4674, 6720, 9372, 12739, 16939, 22099, 28355, 35852, 44744, 55194, 67374, 81465, 97657, 116149, 137149, 160874, 187550, 217412, 250704, 287679, 328599, 373735, 423367, 477784, 537284, 602174, 672770
Offset: 0
-
LinearRecurrence[{5,-10,10,-5,1},{0,12,54,154,349},40] (* Harvey P. Dale, May 01 2014 *)
-
a(n)=if(n<0,0,a(n)=n/24*(9*n^3 + 58*n^2 + 123*n + 98))
A104728
Triangle T(n,k) = (k-1-n)*(k-2-n)*(k-2+2*n)/2 read by rows, 1<=k<=n.
Original entry on oeis.org
1, 9, 4, 30, 18, 7, 70, 48, 27, 10, 135, 100, 66, 36, 13, 231, 180, 130, 84, 45, 16, 364, 294, 225, 160, 102, 54, 19, 540, 448, 357, 270, 190, 120, 63, 22, 765, 648, 532, 420, 315, 220, 138, 72, 25, 1045, 900, 756, 616, 483, 360, 250, 156, 81, 28, 1386, 1210, 1035, 864, 700, 546, 405, 280, 174, 90, 31
Offset: 1
The first few rows of the triangle are:
1;
9, 4;
30, 18, 7;
70, 48, 27, 10;
135, 100, 66, 36, 13;
231, 180, 130, 84, 45, 16;
364, 294, 225, 160, 102, 54, 19;
540, 448, 357, 270, 190, 120, 63, 22;
765, 648, 532, 420, 315, 220, 138, 72, 25;
1045, 900, 756, 616, 483, 360, 250, 156, 81, 28;
1386, 1210, 1035, 864, 700, 546, 405, 280, 174, 90, 31;
1794, 1584, 1375, 1170, 972, 784, 609, 450, 310, 192, 99, 34, etc.
-
A104728 := proc(n)
(k-1-n)*(k-2-n)*(k-2+2*n)/2 ;
end proc:
seq(seq(A104728(n,k),k=1..n),n=1..14) ; # R. J. Mathar, Nov 07 2011
-
Table[(k-1-n)(k-2-n)(k-2+2n)/2,{n,20},{k,n}]//Flatten (* Harvey P. Dale, Dec 25 2018 *)
A349147
Triangle T(n,m) read by rows: the sum of runs of all sequences arranging n objects of one type and m objects of another type.
Original entry on oeis.org
1, 1, 4, 1, 7, 18, 1, 10, 34, 80, 1, 13, 55, 155, 350, 1, 16, 81, 266, 686, 1512, 1, 19, 112, 420, 1218, 2982, 6468, 1, 22, 148, 624, 2010, 5412, 12804, 27456, 1, 25, 189, 885, 3135, 9207, 23595, 54483, 115830, 1, 28, 235, 1210, 4675, 14872, 41041, 101530, 230230, 486200, 1, 31
Offset: 0
The triangle starts
1,
1, 4,
1, 7, 18,
1, 10, 34, 80,
1, 13, 55, 155, 350,
1, 16, 81, 266, 686, 1512,
1, 19, 112, 420, 1218, 2982, 6468,
1, 22, 148, 624, 2010, 5412, 12804, 27456,
1, 25, 189, 885, 3135, 9207, 23595, 54483, 115830,
1, 28, 235, 1210, 4675, 14872, 41041, 101530, 230230, 486200,
1, 31, 286, 1606, 6721, 23023, 68068, 179608, 432718, 967538, 2032316
For n=m=1 the sequences are ab (2 runs) and ba (2 runs), so T(1,1)=2+2=4.
For n=1, m=2 the sequences are aab (2 runs), aba (3 runs), baa (2 runs), so T(1,2)=2+3+2=7.
For n=m=2 the sequences are aabb (2 runs), abab (4 runs), abba (3 runs), baab (3 runs), baba (4 runs), bbaa (2 runs), so T(2,2) = 2+4+3+3+4+2=18.
Showing 1-6 of 6 results.
Comments