cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A172172 Sums of NW-SE diagonals of triangle A172171.

Original entry on oeis.org

0, 1, 10, 20, 39, 68, 116, 193, 318, 520, 847, 1376, 2232, 3617, 5858, 9484, 15351, 24844, 40204, 65057, 105270, 170336, 275615, 445960, 721584, 1167553, 1889146, 3056708, 4945863, 8002580, 12948452, 20951041, 33899502, 54850552, 88750063, 143600624, 232350696
Offset: 0

Views

Author

Mark Dols, Jan 28 2010

Keywords

Comments

This is the sequence A(0,1;1,1;9) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010

Crossrefs

Programs

  • Magma
    [Lucas(n+2) +6*Fibonacci(n+1) -9: n in [0..50]]; // G. C. Greubel, Apr 25 2022
    
  • Mathematica
    CoefficientList[Series[x*(1+8*x)/((1-x)*(1-x-x^2)), {x,0,50}], x] (* G. C. Greubel, Jul 13 2017 *)
  • PARI
    concat(0, Vec(x*(1+8*x)/((1-x)*(1-x-x^2)) + O(x^50))) \\ Colin Barker, Jul 13 2017
    
  • SageMath
    [fibonacci(n+3) +7*fibonacci(n+1) -9 for n in (0..50)] # G. C. Greubel, Apr 25 2022

Formula

a(n) = a(n-1) + a(n-2) + 9 with a(0)=0 and a(1)=1.
From Wolfdieter Lang, Oct 18 2010: (Start)
O.g.f.: x*(1+8*x)/((1-x)*(1-x-x^2)).
a(n) = 2*a(n-1) - a(n-3), a(0)=0, a(1)=1, a(2)=10 (Observation by G. Detlefs).
(End)
a(n+1) - a(n) = A022099(n). - R. J. Mathar, Apr 22 2013
a(n) = -9 + ( (11 + 9*sqrt(5))*(1 + sqrt(5))^n - (11 - 9*sqrt(5))*(1 - sqrt(5))^n )/(2^(n+1)*sqrt(5)). - Colin Barker, Jul 13 2017
a(n) = Fibonacci(n+3) + 7*Fibonacci(n+1) - 9. - G. C. Greubel, Apr 25 2022

Extensions

Wrong offset 1 changed into 0 Wolfdieter Lang, Oct 18 2010

A172173 Sums of NE-SW diagonals of triangle A172171.

Original entry on oeis.org

0, 1, 1, 11, 12, 32, 44, 85, 129, 223, 352, 584, 936, 1529, 2465, 4003, 6468, 10480, 16948, 27437, 44385, 71831, 116216, 188056, 304272, 492337, 796609, 1288955, 2085564, 3374528, 5460092, 8834629, 14294721, 23129359, 37424080, 60553448, 97977528, 158530985
Offset: 0

Views

Author

Mark Dols, Jan 28 2010

Keywords

Crossrefs

Programs

  • Magma
    [Lucas(n) +7*Fibonacci(n-1) -9*((n+1) mod 2): n in [0..50]]; // G. C. Greubel, Apr 25 2022
    
  • Mathematica
    CoefficientList[Series[x*(1+8*x^2)/((1-x^2)*(1-x-x^2)), {x,0,50}], x] (* G. C. Greubel, Jul 13 2017 *)
  • PARI
    concat(0, Vec(x*(1+8*x^2)/((1-x)*(1+x)*(1-x-x^2)) + O(x^50))) \\ Colin Barker, Jul 13 2017
    
  • Sage
    [fibonacci(n+1) +8*fibonacci(n-1) -9*((n+1)%2) for n in (0..50)] # G. C. Greubel, Apr 25 2022

Formula

For n=even: a(n) = a(n-1) + a(n-2); for n=odd: a(n) = a(n-1) + a(n-2) + 9 ; with a(0) = 0 and a(1) = 1.
From Colin Barker, Feb 18 2013: (Start)
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4) for n>3.
G.f.: x*(1+8*x^2) / ((1-x)*(1+x)*(1-x-x^2)).
(End)
a(n) = (2^(-1-n)*(-45*((-2)^n+2^n) + (45-7*sqrt(5))*(1+sqrt(5))^n + (1-sqrt(5))^n*(45+7*sqrt(5)))) / 5. - Colin Barker, Jul 13 2017
a(n) = Fibonacci(n+1) + 8*Fibonacci(n-1) - 9*((1+(-1)^n)/2). - G. C. Greubel, Apr 25 2022

Extensions

Offset corrected by Colin Barker, Feb 18 2013

A228196 A triangle formed like Pascal's triangle, but with n^2 on the left border and 2^n on the right border instead of 1.

Original entry on oeis.org

0, 1, 2, 4, 3, 4, 9, 7, 7, 8, 16, 16, 14, 15, 16, 25, 32, 30, 29, 31, 32, 36, 57, 62, 59, 60, 63, 64, 49, 93, 119, 121, 119, 123, 127, 128, 64, 142, 212, 240, 240, 242, 250, 255, 256, 81, 206, 354, 452, 480, 482, 492, 505, 511, 512, 100, 287, 560, 806, 932, 962, 974, 997, 1016, 1023, 1024
Offset: 1

Views

Author

Boris Putievskiy, Aug 15 2013

Keywords

Comments

The third row is (n^4 - n^2 + 24*n + 24)/12.
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 04 2013

Examples

			The start of the sequence as a triangular array read by rows:
   0;
   1,  2;
   4,  3,  4;
   9,  7,  7,  8;
  16, 16, 14, 15, 16;
  25, 32, 30, 29, 31, 32;
  36, 57, 62, 59, 60, 63, 64;
		

Crossrefs

Cf. We denote Pascal-like triangle with L(n) on the left border and R(n) on the right border by (L(n),R(n)). A007318 (1,1), A008949 (1,2^n), A029600 (2,3), A029618 (3,2), A029635 (1,2), A029653 (2,1), A037027 (Fibonacci(n),1), A051601 (n,n) n>=0, A051597 (n,n) n>0, A051666 (n^2,n^2), A071919 (1,0), A074829 (Fibonacci(n), Fibonacci(n)), A074909 (1,n), A093560 (3,1), A093561 (4,1), A093562 (5,1), A093563 (6,1), A093564 (7,1), A093565 (8,1), A093644 (9,1), A093645 (10,1), A095660 (1,3), A095666 (1,4), A096940 (1,5), A096956 (1,6), A106516 (3^n,1), A108561(1,(-1)^n), A132200 (4,4), A134636 (2n+1,2n+1), A137688 (2^n,2^n), A160760 (3^(n-1),1), A164844(1,10^n), A164847 (100^n,1), A164855 (101*100^n,1), A164866 (101^n,1), A172171 (1,9), A172185 (9,11), A172283 (-9,11), A177954 (int(n/2),1), A193820 (1,2^n), A214292 (n,-n), A227074 (4^n,4^n), A227075 (3^n,3^n), A227076 (5^n,5^n), A227550 (n!,n!), A228053 ((-1)^n,(-1)^n), A228074 (Fibonacci(n), n).
Cf. A000290 (row 1), A153056 (row 2), A000079 (column 1), A000225 (column 2), A132753 (column 3), A118885 (row sums of triangle array + 1), A228576 (generalized Pascal's triangle).

Programs

  • GAP
    T:= function(n,k)
        if k=0 then return n^2;
        elif k=n then return 2^n;
        else return T(n-1,k-1) + T(n-1,k);
        fi;
      end;
    Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 12 2019
  • Maple
    T:= proc(n, k) option remember;
          if k=0 then n^2
        elif k=n then 2^k
        else T(n-1, k-1) + T(n-1, k)
          fi
        end:
    seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Nov 12 2019
  • Mathematica
    T[n_, k_]:= T[n, k] = If[k==0, n^2, If[k==n, 2^k, T[n-1, k-1] + T[n-1, k]]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 12 2019 *)
    Flatten[Table[Sum[i^2 Binomial[n-1-i, n-k-i], {i,1,n-k}] + Sum[2^i Binomial[n-1-i, k-i], {i,1,k}], {n,0,10}, {k,0,n}]] (* Greg Dresden, Aug 06 2022 *)
  • PARI
    T(n,k) = if(k==0, n^2, if(k==n, 2^k, T(n-1, k-1) + T(n-1, k) )); \\ G. C. Greubel, Nov 12 2019
    
  • Python
    def funcL(n):
       q = n**2
       return q
    def funcR(n):
       q = 2**n
       return q
    for n in range (1,9871):
       t=int((math.sqrt(8*n-7) - 1)/ 2)
       i=n-t*(t+1)/2-1
       j=(t*t+3*t+4)/2-n-1
       sum1=0
       sum2=0
       for m1 in range (1,i+1):
          sum1=sum1+funcR(m1)*binomial(i+j-m1-1,i-m1)
       for m2 in range (1,j+1):
          sum2=sum2+funcL(m2)*binomial(i+j-m2-1,j-m2)
       sum=sum1+sum2
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0): return n^2
        elif (k==n): return 2^n
        else: return T(n-1, k-1) + T(n-1, k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 12 2019
    

Formula

T(n,0) = n^2, n>0; T(0,k) = 2^k; T(n, k) = T(n-1, k-1) + T(n-1, k) for n,k > 0. [corrected by G. C. Greubel, Nov 12 2019]
Closed-form formula for general case. Let L(m) and R(m) be the left border and the right border of Pascal like triangle, respectively. We denote binomial(n,k) by C(n,k).
As table read by antidiagonals T(n,k) = Sum_{m1=1..n} R(m1)*C(n+k-m1-1, n-m1) + Sum_{m2=1..k} L(m2)*C(n+k-m2-1, k-m2); n,k >=0.
As linear sequence a(n) = Sum_{m1=1..i} R(m1)*C(i+j-m1-1, i-m1) + Sum_{m2=1..j} L(m2)*C(i+j-m2-1, j-m2), where i=n-t*(t+1)/2-1, j=(t*t+3*t+4)/2-n-1, t=floor((-1+sqrt(8*n-7))/2); n>0.
Some special cases. If L(m)={b,b,b...} b*A000012, then the second sum takes form b*C(n+k-1,j). If L(m) is {0,b,2b,...} b*A001477, then the second sum takes form b*C(n+k,n-1). Similarly for R(m) and the first sum.
For this sequence L(m)=m^2 and R(m)=2^m.
As table read by antidiagonals T(n,k) = Sum_{m1=1..n} (2^m1)*C(n+k-m1-1, n-m1) + Sum_{m2=1..k} (m2^2)*C(n+k-m2-1, k-m2); n,k >=0.
As linear sequence a(n) = Sum_{m1=1..i} (2^m1)*C(i+j-m1-1, i-m1) + Sum_{m2=1..j} (m2^2)*C(i+j-m2-1, j-m2), where i=n-t*(t+1)/2-1, j=(t*t+3*t+4)/2-n-1, t=floor((-1+sqrt(8*n-7))/2).
As a triangular array read by rows, T(n,k) = Sum_{i=1..n-k} i^2*C(n-1-i, n-k-i) + Sum_{i=1..k} 2^i*C(n-1-i, k-i); n,k >=0. - Greg Dresden, Aug 06 2022

Extensions

Cross-references corrected and extended by Philippe Deléham, Dec 27 2013

A172179 (1,[99n+1]) Pascal Triangle.

Original entry on oeis.org

1, 1, 100, 1, 101, 199, 1, 102, 300, 298, 1, 103, 402, 598, 397, 1, 104, 505, 1000, 995, 496, 1, 105, 609, 1505, 1995, 1491, 595, 1, 106, 714, 2114, 3500, 3486, 2086, 694, 1, 107, 820, 2828, 5614, 6986, 5572, 2780, 793, 1, 108, 927, 3648, 8442, 12600, 12558
Offset: 1

Views

Author

Mark Dols, Jan 28 2010

Keywords

Examples

			Triangle begins as:
  1;
  1, 100;
  1, 101, 199;
  1, 102, 300,  298;
  1, 103, 402,  598,  397;
  1, 104, 505, 1000,  995,   496;
  1, 105, 609, 1505, 1995,  1491,   595;
  1, 106, 714, 2114, 3500,  3486,  2086,  694;
  1, 107, 820, 2828, 5614,  6986,  5572, 2780,  793;
  1, 108, 927, 3648, 8442, 12600, 12558, 8352, 3573, 892;
		

Crossrefs

Programs

  • Mathematica
    Table[99*Binomial[n-1, k-2] + Binomial[n-1, k-1], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Apr 27 2022 *)
  • SageMath
    flatten([[98*binomial(n-1,k-2) + binomial(n,k-1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 27 2022

Formula

T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2), T(1,0) = T(2,0) = 1, T(2,1) = 100, T(n,k)=0 if k<0 or if k>=n. - Philippe Deléham, Dec 26 2013
From G. C. Greubel, Apr 27 2022: (Start)
T(n, k) = 99*binomial(n-1, k-2) + binomial(n-1, k-1).
T(n, n) = A172178(n-1).
Sum_{k=1..n} T(n, k) = 100*A000225(n-1) + 1. (End)
Showing 1-4 of 4 results.