cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022107 Fibonacci sequence beginning 1, 17.

Original entry on oeis.org

1, 17, 18, 35, 53, 88, 141, 229, 370, 599, 969, 1568, 2537, 4105, 6642, 10747, 17389, 28136, 45525, 73661, 119186, 192847, 312033, 504880, 816913, 1321793, 2138706, 3460499, 5599205, 9059704, 14658909
Offset: 0

Views

Author

Keywords

Comments

a(n-1)=sum(P(17;n-1-k,k),k=0..ceiling((n-1)/2)), n>=1, with a(-1)=16. These are the SW-NE diagonals in P(17;n,k), the (17,1) Pascal triangle. Cf. A093645 for the (10,1) Pascal triangle. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.

Crossrefs

a(n) = A109754(16, n+1) = A101220(16, 0, n+1).

Programs

  • Magma
    a0:=1; a1:=17; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..30]]; // Bruno Berselli, Feb 12 2013
  • Mathematica
    a={};b=1;c=17;AppendTo[a,b];AppendTo[a,c];Do[b=b+c;AppendTo[a,b];c=b+c;AppendTo[a,c],{n,1,12,1}];a (* Vladimir Joseph Stephan Orlovsky, Jul 23 2008 *)
    LinearRecurrence[{1,1},{1,17},40] (* Harvey P. Dale, Aug 04 2017 *)

Formula

a(n)= a(n-1)+a(n-2), n>=2, a(0)=1, a(1)=17. a(-1):=16.
G.f.: (1+16*x)/(1-x-x^2).