A022113 Fibonacci sequence beginning 2, 7.
2, 7, 9, 16, 25, 41, 66, 107, 173, 280, 453, 733, 1186, 1919, 3105, 5024, 8129, 13153, 21282, 34435, 55717, 90152, 145869, 236021, 381890, 617911, 999801, 1617712, 2617513, 4235225, 6852738, 11087963, 17940701, 29028664, 46969365, 75998029, 122967394
Offset: 0
References
- H. S. M. Coxeter, Introduction to Geometry, Second Edition, Wiley Classics Library Edition Published 1989, p. 172.
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Programs
-
Magma
a0:=2; a1:=7; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]]; // Bruno Berselli, Feb 12 2013
-
Mathematica
RecurrenceTable[{a[0] == 2, a[1] == 7, a[n] == a[n - 1] + a[n - 2]}, a, {n, 0, 40}] (* Bruno Berselli, Mar 12 2015 *) LinearRecurrence[{1, 1}, {2, 7}, 37] (* or *) CoefficientList[Series[-(5 x + 2)/(x^2 + x - 1), {x, 0, 36}], x] (* Michael De Vlieger, Jul 14 2017 *)
-
PARI
a(n)=8*fibonacci(n)+fibonacci(n-3) \\ Charles R Greathouse IV, Jul 14 2017
-
PARI
a(n)=([0,1; 1,1]^n*[2;7])[1,1] \\ Charles R Greathouse IV, Jul 14 2017
Formula
From Colin Barker, Oct 18 2013: (Start)
G.f.: -(5*x + 2)/(x^2 + x - 1).
a(n) = a(n-1) + a(n-2). (End)
a(n) = ((5+6*sqrt(5))/5)*((1+sqrt(5))/2)^n + ((5-6*sqrt(5))/5)*((1-sqrt(5))/2)^n starting at n=0. - Bogart B. Strauss, Oct 27 2013
a(n) = h*Fibonacci(n+k) + Fibonacci(n+k-h) with h=5, k=1. - Bruno Berselli, Feb 20 2017
a(n) = 8*F(n) + F(n-3) for F = A000045. - J. M. Bergot, Jul 14 2017
a(n) = Fibonacci(n+4) + Lucas(n-1). - Greg Dresden and Henry Sauer, Mar 04 2022
E.g.f.: 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) + 6*sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, Jul 18 2022