cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022113 Fibonacci sequence beginning 2, 7.

Original entry on oeis.org

2, 7, 9, 16, 25, 41, 66, 107, 173, 280, 453, 733, 1186, 1919, 3105, 5024, 8129, 13153, 21282, 34435, 55717, 90152, 145869, 236021, 381890, 617911, 999801, 1617712, 2617513, 4235225, 6852738, 11087963, 17940701, 29028664, 46969365, 75998029, 122967394
Offset: 0

Views

Author

Keywords

References

  • H. S. M. Coxeter, Introduction to Geometry, Second Edition, Wiley Classics Library Edition Published 1989, p. 172.

Crossrefs

Programs

  • Magma
    a0:=2; a1:=7; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]]; // Bruno Berselli, Feb 12 2013
    
  • Mathematica
    RecurrenceTable[{a[0] == 2, a[1] == 7, a[n] == a[n - 1] + a[n - 2]}, a, {n, 0, 40}] (* Bruno Berselli, Mar 12 2015 *)
    LinearRecurrence[{1, 1}, {2, 7}, 37] (* or *)
    CoefficientList[Series[-(5 x + 2)/(x^2 + x - 1), {x, 0, 36}], x] (* Michael De Vlieger, Jul 14 2017 *)
  • PARI
    a(n)=8*fibonacci(n)+fibonacci(n-3) \\ Charles R Greathouse IV, Jul 14 2017
    
  • PARI
    a(n)=([0,1; 1,1]^n*[2;7])[1,1] \\ Charles R Greathouse IV, Jul 14 2017

Formula

From Colin Barker, Oct 18 2013: (Start)
G.f.: -(5*x + 2)/(x^2 + x - 1).
a(n) = a(n-1) + a(n-2). (End)
a(n) = ((5+6*sqrt(5))/5)*((1+sqrt(5))/2)^n + ((5-6*sqrt(5))/5)*((1-sqrt(5))/2)^n starting at n=0. - Bogart B. Strauss, Oct 27 2013
a(n) = h*Fibonacci(n+k) + Fibonacci(n+k-h) with h=5, k=1. - Bruno Berselli, Feb 20 2017
a(n) = 8*F(n) + F(n-3) for F = A000045. - J. M. Bergot, Jul 14 2017
a(n) = Fibonacci(n+4) + Lucas(n-1). - Greg Dresden and Henry Sauer, Mar 04 2022
E.g.f.: 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) + 6*sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, Jul 18 2022