A022125 Fibonacci sequence beginning 3, 14.
3, 14, 17, 31, 48, 79, 127, 206, 333, 539, 872, 1411, 2283, 3694, 5977, 9671, 15648, 25319, 40967, 66286, 107253, 173539, 280792, 454331, 735123, 1189454, 1924577, 3114031, 5038608, 8152639, 13191247, 21343886, 34535133, 55879019, 90414152, 146293171, 236707323
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (1, 1).
Programs
-
Mathematica
LinearRecurrence[{1, 1}, {3, 14}, 40] (* Harvey P. Dale, Oct 24 2013 *)
-
PARI
Vec((3 + 11*x) / (1 - x - x^2) + O(x^50)) \\ Colin Barker, Feb 20 2017
Formula
G.f.: (3 + 11*x)/(1 - x - x^2). - Philippe Deléham, Nov 19 2008
a(n) = h*Fibonacci(n+k) + Fibonacci(n+k-h) with h=6, k=2. - Bruno Berselli, Feb 20 2017
From Colin Barker, Feb 20 2017: (Start)
a(n) = (2^(-1-n)*((1-sqrt(5))^n*(-25+3*sqrt(5)) + (1+sqrt(5))^n*(25+3*sqrt(5)))) / sqrt(5).
a(n) = a(n-1) + a(n-2) for n>1.
(End)
a(n) = Lucas(n+4) + Lucas(n-3). - Greg Dresden and Kathleen Wilson, Feb 28 2022