A022163 First row of spectral array W(sqrt(3/2)).
1, 5, 6, 27, 33, 147, 180, 801, 981, 4365, 5346, 23787, 29133, 129627, 158760, 706401, 865161, 3849525, 4714686, 20977947, 25692633, 114319107, 140011740, 622980801, 762992541
Offset: 0
Links
- A. Fraenkel and C. Kimberling, Generalized Wythoff arrays, shuffles and interspersions, Discrete Mathematics 126 (1994) 137-149.
Programs
-
PARI
\\ The first row of the generalized Wythoff array W(h), \\ where h is an irrational number between 1 and 2. row1(h, m) = { my( a=vector(m, n, floor(n*h)), b=setminus(vector(m, n, n), a), w=[a[1]^2, b[a[1]]], j=3 ); while(1, if(j%2==1, if(w[j-1]<=#a, w=concat(w, a[w[j-1]]), return(w)) , if(w[j-2]<=#b, w=concat(w, b[w[j-2]]), return(w)) ); j++ ); w } row1(sqrt(3/2), 100000) \\ Colin Barker, Oct 23 2014
Formula
Conjectures: a(n) = 6*a(n-2)-3*a(n-4). G.f.: -(3*x^3-5*x-1) / (3*x^4-6*x^2+1). - Colin Barker, Oct 23 2014
Extensions
a(14)-a(18) from Colin Barker, Oct 23 2014 and Michel Marcus, Oct 24 2014
a(19)-a(24) from Sean A. Irvine, May 13 2019