cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A249221 Expansion of x*(1+5*x-2*x^3)/(1-6*x^2+2*x^4).

Original entry on oeis.org

1, 5, 6, 28, 34, 158, 192, 892, 1084, 5036, 6120, 28432, 34552, 160520, 195072, 906256, 1101328, 5116496, 6217824, 28886464, 35104288, 163085792, 198190080, 920741824, 1118931904, 5198279360, 6317211264, 29348192512, 35665403776, 165692596352, 201358000128
Offset: 1

Views

Author

Colin Barker, Oct 23 2014

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 + 5 x - 2 x^3)/(1 - 6 x^2 + 2 x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 23 2014 *)
    LinearRecurrence[{0,6,0,-2},{1,5,6,28},40] (* Harvey P. Dale, Apr 20 2017 *)
  • PARI
    Vec((1+5*x-2*x^3)/(1-6*x^2+2*x^4) + O(x^100))

Formula

a(n) = 6*a(n-2)-2*a(n-4).

A249222 Expansion of x*(1+5*x-5*x^3)/(1-6*x^2+5*x^4).

Original entry on oeis.org

1, 5, 6, 25, 31, 125, 156, 625, 781, 3125, 3906, 15625, 19531, 78125, 97656, 390625, 488281, 1953125, 2441406, 9765625, 12207031, 48828125, 61035156, 244140625, 305175781, 1220703125, 1525878906, 6103515625, 7629394531, 30517578125, 38146972656, 152587890625
Offset: 1

Views

Author

Colin Barker, Oct 23 2014

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 + 5 x - 5 x^3)/(1 - 6 x^2 + 5 x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 23 2014 *)
  • PARI
    Vec((1+5*x-5*x^3)/(1-6*x^2+5*x^4) + O(x^100))
    
  • PARI
    a(n)=round((9-(-1)^n)*5^(n\2)/8) \\ Tani Akinari, Oct 26 2014

Formula

a(n) = 6*a(n-2)-5*a(n-4).

A022162 First column of spectral array W(sqrt(3/2)).

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 9, 11, 13, 14, 15, 17, 18, 20, 22, 23, 24, 26, 28, 29, 30, 31, 34, 35, 36, 37, 40, 41, 42, 44, 45, 47, 48, 50, 51, 53, 55, 56, 57, 58, 61, 62, 63, 64, 67, 68, 69, 71, 73, 74, 75, 77, 78, 80, 82, 83, 84, 86, 88, 89, 90, 91, 94, 95, 96, 97
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A022163.

Programs

  • Magma
    [Floor(Sqrt(3/2)*Floor(n*Sqrt(3/2))): n in [1..50]]; // G. C. Greubel, May 27 2018
  • Mathematica
    Table[Floor[Sqrt[3/2]*Floor[Sqrt[3/2]*n]], {n, 1, 50}] (* G. C. Greubel, May 27 2018 *)
  • PARI
    a(n) = floor(sqrt(3/2)*floor(sqrt(3/2)*n)); \\ Michel Marcus, Mar 05 2014
    

Extensions

More terms from Michel Marcus, Mar 05 2014

A249309 First row of spectral array W(Pi/2).

Original entry on oeis.org

1, 2, 3, 5, 7, 13, 20, 35, 54, 96, 150, 264, 414, 726, 1140, 1997, 3136, 5495, 8631, 15121, 23752, 41612, 65363, 114513, 179876, 315132, 495008, 867223, 1362230, 2386544, 3748774, 6567622, 10316396
Offset: 1

Views

Author

Colin Barker, Oct 25 2014

Keywords

Crossrefs

Programs

  • PARI
    \\ The first row of the generalized Wythoff array W(h),
    \\   where h is an irrational number between 1 and 2.
    row1(h, m) = {
      my(
        a=vector(m, n, floor(n*h)),
        b=setminus(vector(m, n, n), a),
        w=[a[1]^2, b[a[1]]],
        j=3
      );
      while(1,
        if(j%2==1,
          if(w[j-1]<=#a, w=concat(w, a[w[j-1]]), return(w))
        ,
          if(w[j-2]<=#b, w=concat(w, b[w[j-2]]), return(w))
        );
        j++
      );
      w
    }
    allocatemem(10^9)
    row1(Pi/2, 10^7)

A249697 First row of spectral array W(Pi-2).

Original entry on oeis.org

1, 8, 9, 64, 73, 516, 589, 4160, 4749, 33540, 38289, 270416, 308704, 2180232, 2488936, 17578149
Offset: 1

Views

Author

Colin Barker, Nov 04 2014

Keywords

Crossrefs

Programs

  • PARI
    \\ Row i of the generalized Wythoff array W(h),
    \\ where h is an irrational number between 1 and 2,
    \\ and m is the number of terms in the vectors a and b.
    row(h, i, m) = {
      my(
        a=vector(m, n, floor(n*h)),
        b=vector(m, n, floor(n*h/(h-1))),
        w=[a[a[i]], b[a[i]]],
        j=3
      );
      while(1,
        if(j%2==1,
          if(w[j-1]<=#a, w=concat(w, a[w[j-1]]), return(w))
        ,
          if(w[j-2]<=#b, w=concat(w, b[w[j-2]]), return(w))
        );
        j++
      )
    }
    allocatemem(10^9)
    row(Pi-2, 1, 10^7)
Showing 1-5 of 5 results.