A022199 Gaussian binomial coefficients [ n,8 ] for q = 3.
1, 9841, 72636421, 494894285941, 3287582741506063, 21658948312410865183, 142299528422960399756323, 934054234760012359481199283, 6129263888495201102915629695046, 40216143252770054194345243936096486, 263862583736385343242102717216527933566
Offset: 8
References
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 8..200
Programs
-
Magma
r:=8; q:=3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 07 2016
-
Mathematica
Table[QBinomial[n, 8, 3], {n, 8, 20}] (* Vincenzo Librandi, Aug 07 2016 *)
-
PARI
r=8; q=3; for(n=r,30, print1(prod(j=1,r,(1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, May 30 2018
-
Sage
[gaussian_binomial(n,8,3) for n in range(8,19)] # Zerinvary Lajos, May 25 2009
Formula
G.f.: x^8/((1-x)*(1-3*x)*(1-9*x)*(1-27*x)*(1-81*x)*(1-243*x)*(1-729*x)*(1-2187*x)*(1-6561*x)). - Vincenzo Librandi, Aug 07 2016
a(n) = Product_{i=1..8} (3^(n-i+1)-1)/(3^i-1), by definition. - Vincenzo Librandi, Aug 07 2016
Extensions
Offset changed by Vincenzo Librandi, Aug 07 2016