A022263 Gaussian binomial coefficients [ n,12 ] for q = 9.
1, 317733228541, 90858964067210376612667, 25696504083440779881815469635549047, 7258558056330718241144285557911444544132154908, 2050065905416034207242060732309202881550943087590159038828, 579000252913277034724666671128579290474420179812795955722564434314244
Offset: 12
Keywords
References
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 12..100
Programs
-
Magma
r:=12; q:=9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 04 2016
-
Mathematica
Table[QBinomial[n, 12, 9], {n, 12, 30}] (* Vincenzo Librandi, Aug 04 2016 *)
-
Sage
[gaussian_binomial(n,12,9) for n in range(12,19)] # Zerinvary Lajos, May 28 2009
Formula
a(n) = Product_{i=1..12} (9^(n-i+1)-1)/(9^i-1), by definition. - Vincenzo Librandi, Aug 04 2016
Extensions
Offset changed by Vincenzo Librandi, Aug 04 2016