A022290 Replace 2^k in binary expansion of n with Fibonacci(k+2).
0, 1, 2, 3, 3, 4, 5, 6, 5, 6, 7, 8, 8, 9, 10, 11, 8, 9, 10, 11, 11, 12, 13, 14, 13, 14, 15, 16, 16, 17, 18, 19, 13, 14, 15, 16, 16, 17, 18, 19, 18, 19, 20, 21, 21, 22, 23, 24, 21, 22, 23, 24, 24, 25, 26, 27, 26, 27, 28, 29, 29, 30, 31, 32, 21, 22, 23, 24, 24, 25, 26
Offset: 0
Examples
n=4 = 2^2 is replaced by A000045(2+2) = 3. n=5 = 2^2 + 2^0 is replaced by A000045(2+2) + A000045(0+2) = 3+1 = 4. - _R. J. Mathar_, Jan 31 2015 From _Philippe Deléham_, Jun 05 2015: (Start) This sequence regarded as a triangle with rows of lengths 1, 1, 2, 4, 8, 16, ...: 0 1 2, 3 3, 4, 5, 6 5, 6, 7, 8, 8, 9, 10, 11 8, 9, 10, 11, 11, 12, 13, 14, 13, 14, 15, 16, 16, 17, 18, 19 ... (End)
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Haskell
a022290 0 = 0 a022290 n = h n 0 $ drop 2 a000045_list where h 0 y _ = y h x y (f:fs) = h x' (y + f * r) fs where (x',r) = divMod x 2 -- Reinhard Zumkeller, Oct 03 2012
-
Maple
A022290 := proc(n) dgs := convert(n,base,2) ; add( op(i,dgs)*A000045(i+1),i=1..nops(dgs)) ; end proc: # R. J. Mathar, Jan 31 2015 # second Maple program: b:= (n, i, j)-> `if`(n=0, 0, j*irem(n, 2, 'q')+b(q, j, i+j)): a:= n-> b(n, 1$2): seq(a(n), n=0..127); # Alois P. Heinz, Jan 26 2022
-
Mathematica
Table[Reverse[#].Fibonacci[1 + Range[Length[#]]] &@ IntegerDigits[n, 2], {n, 0, 54}] (* IWABUCHI Yu(u)ki, Aug 01 2012 *)
-
PARI
my(m=Mod('x,'x^2-'x-1)); a(n) = subst(lift(subst(Pol(binary(n)), 'x,m)), 'x,2); \\ Kevin Ryde, Sep 22 2020
-
Python
def A022290(n): a, b, s = 1,2,0 for i in bin(n)[-1:1:-1]: s += int(i)*a a, b = b, a+b return s # Chai Wah Wu, Sep 10 2022
Formula
G.f.: (1/(1-x)) * Sum_{k>=0} F(k+2)*x^2^k/(1+x^2^k), where F = A000045.
a(A003714(n)) = n. - R. J. Mathar, Jan 31 2015
From Jeffrey Shallit, Jul 17 2018: (Start)
Can be computed from the recurrence:
a(4*k) = a(k) + a(2*k),
a(4*k+1) = a(k) + a(2*k+1),
a(4*k+2) = a(k) - a(2*k) + 2*a(2*k+1),
a(4*k+3) = a(k) - 2*a(2*k) + 3*a(2*k+1),
and the initial terms a(0) = 0, a(1) = 1. (End)
a(A003754(n)) = n-1. - Rémy Sigrist, Jan 28 2020
From Rémy Sigrist, Aug 04 2022: (Start)
Empirically:
(End)