cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A333230 Positions of weak ascents in the sequence of differences between primes.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 10, 13, 14, 15, 17, 20, 22, 23, 26, 28, 29, 31, 33, 35, 36, 38, 39, 41, 43, 45, 46, 49, 50, 52, 54, 55, 57, 60, 61, 64, 65, 67, 69, 70, 71, 73, 75, 76, 78, 79, 81, 83, 85, 86, 89, 90, 93, 95, 96, 98, 100, 102, 104, 105, 107, 109, 110, 113
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2020

Keywords

Comments

Partial sums of A333252.

Examples

			The prime gaps split into the following strictly decreasing subsequences: (1), (2), (2), (4,2), (4,2), (4), (6,2), (6,4,2), (4), (6), (6,2), (6,4,2), (6,4), (6), (8,4,2), ...
		

Crossrefs

The version for the Kolakoski sequence is A022297.
The version for equal differences is A064113.
The version for strict ascents is A258025.
The version for strict descents is A258026.
The version for distinct differences is A333214.
The version for weak descents is A333231.
First differences are A333252 (if the first term is 0).
Prime gaps are A001223.
Weakly decreasing runs of standard compositions are counted by A124765.
Weakly increasing runs of standard compositions are counted by A124766.
Strictly increasing runs of standard compositions are counted by A124768.
Strictly decreasing runs of standard compositions are counted by A124769.
Runs of prime gaps with nonzero differences are A333216.

Programs

  • Mathematica
    Accumulate[Length/@Split[Differences[Array[Prime,100]],#1>#2&]]//Most
    (* or *)
    Select[Range[100],Prime[#+1]-Prime[#]<=Prime[#+2]-Prime[#+1]&]

Formula

Numbers k such that prime(k+2) - 2*prime(k+1) + prime(k) >= 0.

A376651 Points of upward concavity in the sequence of composite numbers (A002808).

Original entry on oeis.org

4, 8, 12, 17, 23, 26, 30, 35, 40, 46, 49, 55, 58, 63, 70, 73, 77, 81, 94, 97, 102, 112, 118, 123, 126, 131, 136, 146, 150, 162, 173, 176, 180, 185, 195, 200, 205, 210, 216, 219, 229, 242, 245, 249, 262, 267, 276, 280, 285, 292, 297, 302, 305, 310, 317, 320
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2024

Keywords

Comments

These are points at which the second differences (A073445) are positive.
Also positions of strict ascents in the first differences (A073783) of composite numbers (A002808).

Examples

			The composite numbers are (A002808):
  4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ...
with first differences (A073783):
  2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, ...
with first differences (A073445):
  0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, ...
with positive terms at (A376651):
  4, 8, 12, 17, 23, 26, 30, 35, 40, 46, 49, 55, 58, 63, 70, 73, 77, 81, 94, 97, ...
		

Crossrefs

The version for A000002 is A022297, negative A156242.
Partitions into composite numbers are counted by A023895, factorizations A050370.
For first differences we had A065310 or A073783, ones A375929.
These are the positions of positive terms in A073445, negative A376652.
For prime instead of composite we have A258025, negative A258026.
For zero second differences (instead of positive) we have A376602.
For composite numbers: A002808 (terms), A073783 (first differences), A073445 (second differences), A376602 (inflections and undulations), A376603 (nonzero curvature), A376652 (concave-down).

Programs

  • Mathematica
    Join@@Position[Sign[Differences[Select[Range[1000],CompositeQ],2]],1]

A376652 Points of downward concavity in the sequence of composite numbers (A002808).

Original entry on oeis.org

2, 6, 10, 13, 19, 24, 28, 31, 36, 42, 47, 51, 56, 59, 64, 71, 75, 79, 82, 95, 98, 104, 114, 119, 124, 127, 132, 138, 148, 152, 163, 174, 178, 181, 187, 196, 201, 206, 212, 217, 221, 230, 243, 247, 250, 263, 268, 278, 281, 286, 293, 298, 303, 306, 311, 318, 321
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2024

Keywords

Comments

These are points at which the second differences (A073445) are negative.
Also positions of strict descents in the first differences (A073783) of composite numbers (A002808).

Examples

			The composite numbers are (A002808):
  4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ...
with first differences (A073783):
  2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, ...
with second differences (A073445):
  0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, ...
with negative terms at (A376651):
  2, 6, 10, 13, 19, 24, 28, 31, 36, 42, 47, 51, 56, 59, 64, 71, 75, 79, 82, 95, 98, ...
		

Crossrefs

The version for A000002 is A156242, positive A022297.
Partitions into composite numbers are counted by A023895, factorizations A050370.
For first differences we had A065310 or A073783, ones A375929.
These are the positions of negative terms in A073445, positive A376651.
For prime instead of composite we have A258026, positive A258025.
For zero second differences instead of negative we have A376602.
For composite numbers: A002808 (terms), A073783 (first differences), A073445 (second differences), A376602 (inflections and undulations), A376603 (nonzero curvature), A376651 (concave-up).

Programs

  • Maple
    Comps:= remove(isprime, [seq(i,i=4..1000)]):
    D1:= Comps[2..-1]-Comps[1..-2]:
    D2:= D1[2..-1]-D1[1..-2]:
    select(t -> D2[t] < 0, [$1..nops(D2)]); # Robert Israel, Nov 06 2024
  • Mathematica
    Join@@Position[Sign[Differences[Select[Range[1000],CompositeQ],2]],-1]

A013947 Positions of 1's in Kolakoski sequence (A000002).

Original entry on oeis.org

1, 4, 5, 7, 10, 13, 14, 16, 17, 20, 22, 23, 25, 28, 29, 31, 32, 34, 37, 40, 41, 43, 46, 48, 49, 51, 52, 55, 58, 59, 61, 64, 67, 68, 70, 71, 73, 76, 78, 79, 82, 85, 86, 88, 91, 94, 95, 97, 98, 101, 103, 104, 106, 109, 112, 113, 115, 116, 118, 121, 122, 124, 125, 128, 130, 131, 133
Offset: 1

Views

Author

Keywords

Crossrefs

Complement: A013948.

Formula

For n > 1, a(n) = A022297(n)+1.

A376560 Points of upward concavity in the sequence of perfect-powers (A001597). Positives of A376559.

Original entry on oeis.org

1, 3, 4, 6, 8, 9, 10, 11, 12, 15, 16, 17, 20, 22, 23, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 53, 54, 55, 57, 58, 60, 61, 62, 63, 64, 65, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91
Offset: 1

Views

Author

Gus Wiseman, Sep 30 2024

Keywords

Comments

These are points at which the second differences are positive.
Perfect-powers (A001597) are numbers with a proper integer root.
Note that, for some sources, upward concavity is negative curvature.

Examples

			The perfect powers (A001597) are:
  1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, 196, ...
with first differences (A053289):
  3, 4, 1, 7, 9, 2, 5, 4, 13, 15, 17, 19, 21, 4, 3, 16, 25, 27, 20, 9, 18, 13, 33, ...
with first differences (A376559):
  1, -3, 6, 2, -7, 3, -1, 9, 2, 2, 2, 2, -17, -1, 13, 9, 2, -7, -11, 9, -5, 20, 2, ...
with positive positions (A376560):
  1, 3, 4, 6, 8, 9, 10, 11, 12, 15, 16, 17, 20, 22, 23, 26, 27, 28, 31, 32, 33, 34, ...
		

Crossrefs

The version for A000002 is A022297, complement A025505. See also A054354, A376604.
For first differences we have A053289, union A023055, firsts A376268, A376519.
For primes instead of perfect-powers we have A258025.
These are positions of positive terms in A376559.
For downward concavity we have A376561 (probably the complement).
A001597 lists the perfect-powers.
A064113 lists positions of adjacent equal prime gaps.
A333254 gives run-lengths of differences between consecutive primes.
Second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376596 (prime-power), A376599 (non-prime-power).

Programs

  • Maple
    N:= 10^6: # to use perfect powers <= N
    S:= {1,seq(seq(i^j,j=2..floor(log[i](N))),i=2..isqrt(N))}:
    L:= sort(convert(S,list)):
    DL:= L[2..-1]-L[1..-2]:
    D2L:= DL[2..-1]-DL[1..-2]:
    select(i -> D2L[i]>0, [$1..nops(D2L)]); # Robert Israel, Dec 01 2024
  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Join@@Position[Sign[Differences[Select[Range[1000],perpowQ],2]],1]

A376561 Points of downward concavity in the sequence of perfect-powers (A001597).

Original entry on oeis.org

2, 5, 7, 13, 14, 18, 19, 21, 24, 25, 29, 30, 39, 40, 45, 51, 52, 56, 59, 66, 70, 71, 74, 87, 94, 101, 102, 108, 110, 112, 113, 119, 127, 135, 143, 144, 156, 157, 160, 161, 169, 178, 187, 196, 205, 206, 215, 224, 225, 234, 244, 263, 273, 283, 284, 293, 294, 304
Offset: 1

Views

Author

Gus Wiseman, Sep 30 2024

Keywords

Comments

These are points at which the second differences are negative.
Perfect-powers (A001597) are numbers with a proper integer root.
Note that, for some sources, downward concavity is positive curvature.
From Robert Israel, Oct 31 2024: (Start)
The first case of two consecutive numbers in the sequence is a(4) = 13 and a(5) = 14.
The first case of three consecutive numbers is a(293) = 2735, a(294) = 2736, a(295) = 2737.
The first case of four consecutive numbers, if it exists, involves a(k) with k > 69755. (End)

Examples

			The perfect powers (A001597) are:
  1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, 196, ...
with first differences (A053289):
  3, 4, 1, 7, 9, 2, 5, 4, 13, 15, 17, 19, 21, 4, 3, 16, 25, 27, 20, 9, 18, 13, 33, ...
with first differences (A376559):
  1, -3, 6, 2, -7, 3, -1, 9, 2, 2, 2, 2, -17, -1, 13, 9, 2, -7, -11, 9, -5, 20, 2, ...
with negative positions (A376561):
  2, 5, 7, 13, 14, 18, 19, 21, 24, 25, 29, 30, 39, 40, 45, 51, 52, 56, 59, 66, 70, ...
		

Crossrefs

The version for A000002 is A025505, complement A022297. See also A054354, A376604.
For first differences we have A053289, union A023055, firsts A376268, A376519.
For primes instead of perfect-powers we have A258026.
For upward concavity we have A376560 (probably the complement).
A000961 lists the prime-powers inclusive, exclusive A246655.
A001597 lists the perfect-powers.
A007916 lists the non-perfect-powers.
A112344 counts partitions into perfect-powers, factorizations A294068.
A333254 gives run-lengths of differences between consecutive primes.
Second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376596 (prime-power), A376599 (non-prime-power).

Programs

  • Maple
    N:= 10^6: # to use perfect powers <= N
    P:= {seq(seq(i^m,i=2..floor(N^(1/m))), m=2 .. ilog2(N))}: nP:= nops(P):
    P:= sort(convert(P,list)):
    select(i -> 2*P[i] > P[i-1]+P[i+1], [$2..nP-1]); # Robert Israel, Oct 31 2024
  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Join@@Position[Sign[Differences[Select[Range[1000],perpowQ],2]],-1]
Showing 1-6 of 6 results.