cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A073445 Second differences of A002808, the sequence of composites.

Original entry on oeis.org

0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 1, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0
Offset: 1

Views

Author

Labos Elemer, Aug 01 2002

Keywords

Examples

			From _Gus Wiseman_, Oct 10 2024: (Start)
The composite numbers (A002808) are:
  4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ...
with first differences (A073783):
  2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, ...
with first differences (A073445):
  0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, ...
(End)
		

Crossrefs

Also first differences of A054546.
For first differences we had A073783 (ones A375929), run-lengths A376680.
Positions of zeros are A376602.
Positions of nonzeros are A376603.
Positions of ones are A376651, negative-ones A376652.
A002808 lists the composite numbers.
A064113 lists positions of adjacent equal prime gaps.
A333254 gives run-lengths of differences between consecutive primes.
Other second differences: A036263 (prime), A376590 (squarefree), A376596 (prime-power), A376604 (Kolakoski).

Programs

  • Haskell
    a073445 n = a073445_list !! (n-1)
    a073445_list = zipWith (-) (tail a073783_list) a073783_list
    -- Reinhard Zumkeller, Jan 10 2013
    
  • Mathematica
    c[x_] := FixedPoint[x+PrimePi[ # ]+1&, x]; Table[c[w+2]-2*c[w+1]+c[w], {w, 200}]
    (* second program *)
    Differences[Select[Range[100],CompositeQ],2] (* Gus Wiseman, Oct 08 2024 *)
  • Python
    from sympy import primepi
    def A073445(n):
        def iterfun(f,n=0):
            m, k = n, f(n)
            while m != k: m, k = k, f(k)
            return m
        return (a:=iterfun(f:=lambda x:n+primepi(x)+1,n))-((b:=iterfun(lambda x:f(x)+1,a))<<1)+iterfun(lambda x:f(x)+2,b) # Chai Wah Wu, Oct 03 2024

Formula

a(n) = c(n+2)-2*c(n+1)+c(n), where c(n) = A002808(n).
a(n) = A073783(n+1) - A073783(n). - Reinhard Zumkeller, Jan 10 2013

A377033 Array read by antidiagonals downward where A(n,k) is the n-th term of the k-th differences of the composite numbers (A002808).

Original entry on oeis.org

4, 6, 2, 8, 2, 0, 9, 1, -1, -1, 10, 1, 0, 1, 2, 12, 2, 1, 1, 0, -2, 14, 2, 0, -1, -2, -2, 0, 15, 1, -1, -1, 0, 2, 4, 4, 16, 1, 0, 1, 2, 2, 0, -4, -8, 18, 2, 1, 1, 0, -2, -4, -4, 0, 8, 20, 2, 0, -1, -2, -2, 0, 4, 8, 8, 0, 21, 1, -1, -1, 0, 2, 4, 4, 0, -8, -16, -16
Offset: 0

Views

Author

Gus Wiseman, Oct 17 2024

Keywords

Comments

Row n is the k-th differences of A002808 = the composite numbers.

Examples

			Array begins:
        n=1:  n=2:  n=3:  n=4:  n=5:  n=6:  n=7:  n=8:  n=9:
  ----------------------------------------------------------
  k=0:   4     6     8     9    10    12    14    15    16
  k=1:   2     2     1     1     2     2     1     1     2
  k=2:   0    -1     0     1     0    -1     0     1     0
  k=3:  -1     1     1    -1    -1     1     1    -1    -1
  k=4:   2     0    -2     0     2     0    -2     0     2
  k=5:  -2    -2     2     2    -2    -2     2     2    -2
  k=6:   0     4     0    -4     0     4     0    -4    -1
  k=7:   4    -4    -4     4     4    -4    -4     3    10
  k=8:  -8     0     8     0    -8     0     7     7   -29
  k=9:   8     8    -8    -8     8     7     0   -36    63
Triangle begins:
    4
    6    2
    8    2    0
    9    1   -1   -1
   10    1    0    1    2
   12    2    1    1    0   -2
   14    2    0   -1   -2   -2    0
   15    1   -1   -1    0    2    4    4
   16    1    0    1    2    2    0   -4   -8
   18    2    1    1    0   -2   -4   -4    0    8
   20    2    0   -1   -2   -2    0    4    8    8    0
   21    1   -1   -1    0    2    4    4    0   -8  -16  -16
		

Crossrefs

Initial rows: A002808, A073783, A073445.
The version for primes is A095195 or A376682.
A version for partitions is A175804, cf. A053445, A281425, A320590.
Triangle row-sums are A377034, absolute version A377035.
Column n = 1 is A377036, for primes A007442 or A030016.
First position of 0 in each row is A377037.
Other arrays of differences: A095195 (prime), A376682 (noncomposite), A377033 (composite), A377038 (squarefree), A377046 (nonsquarefree), A377051 (prime-power).
A000040 lists the primes, differences A001223, seconds A036263.
A008578 lists the noncomposites, differences A075526.
Cf. A065310, A065890, A084758, A173390, A350004, A376602 (zero), A376603 (nonzero), A376651 (positive), A376652 (negative), A376680.

Programs

  • Mathematica
    nn=9;
    t=Table[Take[Differences[NestList[NestWhile[#+1&, #+1,PrimeQ]&,4,2*nn],k],nn],{k,0,nn}]

Formula

A(i,j) = Sum_{k=0..j} (-1)^(j-k) binomial(j,k) A002808(i+k).

A376682 Array read by antidiagonals downward where A(n,k) is the n-th term of the k-th differences of the noncomposite numbers (A008578).

Original entry on oeis.org

1, 2, 1, 3, 1, 0, 5, 2, 1, 1, 7, 2, 0, -1, -2, 11, 4, 2, 2, 3, 5, 13, 2, -2, -4, -6, -9, -14, 17, 4, 2, 4, 8, 14, 23, 37, 19, 2, -2, -4, -8, -16, -30, -53, -90, 23, 4, 2, 4, 8, 16, 32, 62, 115, 205, 29, 6, 2, 0, -4, -12, -28, -60, -122, -237, -442, 31, 2, -4, -6, -6, -2, 10, 38, 98, 220, 457, 899
Offset: 0

Views

Author

Gus Wiseman, Oct 15 2024

Keywords

Comments

Row k is the k-th differences of the noncomposite numbers.

Examples

			Array begins:
         n=1:  n=2:  n=3:  n=4:  n=5:  n=6:  n=7:  n=8:  n=9:
  -----------------------------------------------------------
  k=0:    1     2     3     5     7    11    13    17    19
  k=1:    1     1     2     2     4     2     4     2     4
  k=2:    0     1     0     2    -2     2    -2     2     2
  k=3:    1    -1     2    -4     4    -4     4     0    -6
  k=4:   -2     3    -6     8    -8     8    -4    -6    14
  k=5:    5    -9    14   -16    16   -12    -2    20   -28
  k=6:  -14    23   -30    32   -28    10    22   -48    48
  k=7:   37   -53    62   -60    38    12   -70    96   -70
  k=8:  -90   115  -122    98   -26   -82   166  -166    86
  k=9:  205  -237   220  -124   -56   248  -332   252   -86
Triangle begins:
    1
    2    1
    3    1    0
    5    2    1    1
    7    2    0   -1   -2
   11    4    2    2    3    5
   13    2   -2   -4   -6   -9  -14
   17    4    2    4    8   14   23   37
   19    2   -2   -4   -8  -16  -30  -53  -90
   23    4    2    4    8   16   32   62  115  205
   29    6    2    0   -4  -12  -28  -60 -122 -237 -442
   31    2   -4   -6   -6   -2   10   38   98  220  457  899
		

Crossrefs

The version for modern primes (A000040) is A095195.
Initial rows: A008578, A075526, A036263 with 0 prepended.
Column n = 1 is A030016 (modern A007442).
A version for partitions is A175804, cf. A053445, A281425, A320590.
Antidiagonal-sums are A376683 (modern A140119), absolute A376684 (modern A376681).
First position of 0 is A376855 (modern A376678).
For composite instead of prime we have A377033.
For squarefree instead of prime we have A377038, nonsquarefree A377046.
For prime-power instead of composite we have A377051.
A000040 lists the primes, differences A001223, second A036263.

Programs

  • Mathematica
    nn=12;
    t=Table[Take[Differences[NestList[NestWhile[#+1&, #+1,!PrimeQ[#]&]&,1,2*nn],k],nn],{k,0,nn}]
    (* or *)
    nn=12;
    q=Table[If[n==0,1,Prime[n]],{n,0,2nn}];
    Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[i+k]],{k,0,j}],{j,0,nn},{i,nn}]

Formula

A(i,j) = Sum_{k=0..j} (-1)^(j-k) binomial(j,k) A008578(i+k).

A376602 Inflection and undulation points in the sequence of composite numbers (A002808).

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 14, 15, 16, 18, 20, 21, 22, 25, 27, 29, 32, 33, 34, 37, 38, 39, 41, 43, 44, 45, 48, 50, 52, 53, 54, 57, 60, 61, 62, 65, 66, 67, 68, 69, 72, 74, 76, 78, 80, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 96, 99, 100, 101, 103, 105, 106, 107, 108
Offset: 1

Views

Author

Gus Wiseman, Oct 05 2024

Keywords

Comments

These are points at which the second differences (A073445) are zero.

Examples

			The composite numbers (A002808) are:
  4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ...
with first differences (A073783):
  2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, ...
with first differences (A073445):
  0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, ...
with zeros at (A376602):
  1, 3, 5, 7, 9, 11, 14, 15, 16, 18, 20, 21, 22, 25, 27, 29, 32, 33, 34, 37, 38, ...
		

Crossrefs

Partitions into composite numbers are counted by A023895, factorizations A050370.
For prime instead of composite we have A064113.
These are the positions of zeros in A073445.
For first differences we had A073783, ones A375929, complement A065890.
For concavity in primes we have A258025/A258026, weak A333230/A333231.
For upward concavity (instead of zero) we have A376651, downward A376652.
The complement is A376603.
For composite numbers: A002808 (terms), A073783 (first differences), A073445 (second differences), A376603 (nonzero curvature), A376651 (concave-up), A376652 (concave-down).
For inflection and undulation points: A064113 (prime), A376588 (non-perfect-power), A376591 (squarefree), A376594 (nonsquarefree), A376597 (prime-power), A376600 (non-prime-power).

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],CompositeQ],2],0]

A377034 Antidiagonal-sums of the array A377033(n,k) = n-th term of the k-th differences of the composite numbers (A002808).

Original entry on oeis.org

4, 8, 10, 8, 14, 14, 11, 24, 10, 20, 37, -10, 56, 26, -52, 260, -659, 2393, -8128, 25703, -72318, 184486, -430901, 933125, -1888651, 3597261, -6479654, 11086964, -18096083, 28307672, -42644743, 62031050, -86466235, 110902085, -110907437, 52379, 483682985
Offset: 1

Views

Author

Gus Wiseman, Oct 17 2024

Keywords

Comments

Row-sums of the triangle version of A377033.

Examples

			The fourth antidiagonal of A377033 is (9, 1, -1, -1), so a(4) = 8.
		

Crossrefs

The version for prime instead of composite is A140119, noncomposite A376683.
This is the antidiagonal-sums of the array A377033, absolute version A377035.
For squarefree instead of composite we have A377039, absolute version A377040.
For nonsquarefree instead of composite we have A377047, absolute version A377048.
For prime-power instead of composite we have A377052, absolute version A377053.
Other arrays of differences: A095195 (prime), A376682 (noncomposite), A377033 (composite), A377038 (squarefree), A377046 (nonsquarefree), A377051 (prime-power).
A000040 lists the primes, differences A001223, second A036263.
A002808 lists the composite numbers, differences A073783, second A073445.
A008578 lists the noncomposites, differences A075526.
Cf. A018252, A065310, A065890, A333254, A376602 (zero), A376603 (nonzero), A376651 (positive), A376652 (negative), A376680, A377036.

Programs

  • Mathematica
    q=Select[Range[100],CompositeQ];
    t=Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[i+k]],{k,0,j}],{j,0,Length[q]/2},{i,Length[q]/2}];
    Total/@Table[t[[j,i-j+1]],{i,Length[q]/2},{j,i}]

A377037 Position of first zero in the n-th differences of the composite numbers (A002808), or 0 if it does not appear.

Original entry on oeis.org

1, 14, 2, 65, 1, 83, 2, 7, 1, 83, 2, 424, 12, 32, 11, 733, 10, 940, 9, 1110, 8, 1110, 7, 1110, 6, 1110, 112, 1110, 111, 1110, 110, 2192, 109, 13852, 108, 13852, 107, 13852, 106, 13852, 105, 17384, 104, 17384, 103, 17384, 102, 17384, 101, 27144, 552, 28012, 551
Offset: 2

Views

Author

Gus Wiseman, Oct 17 2024

Keywords

Examples

			The third differences of the composite numbers are:
  -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -2, 1, 0, 0, 1, -1, -1, ...
so a(3) = 14.
		

Crossrefs

The version for prime instead of composite is A376678.
For noncomposite numbers we have A376855.
This is the first position of 0 in row n of the array A377033.
For squarefree instead of composite we have A377042, nonsquarefree A377050.
For prime-power instead of composite we have A377055.
Other arrays of differences: A095195 (prime), A376682 (noncomposite), A377033 (composite), A377038 (squarefree), A377046 (nonsquarefree), A377051 (prime-power).
A000040 lists the primes, differences A001223, second A036263.
A002808 lists the composite numbers, differences A073783, second A073445.
A008578 lists the noncomposites, differences A075526.
A377036 gives first term of the n-th differences of the composite numbers, for primes A007442 or A030016.

Programs

  • Mathematica
    nn=10000;
    u=Table[Differences[Select[Range[nn],CompositeQ],k],{k,2,16}];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    m=Table[Position[u[[k]],0][[1,1]],{k,mnrm[Union[First/@Position[u,0]]]}]

Extensions

Offset 2 from Michel Marcus, Oct 18 2024
a(17)-a(54) from Alois P. Heinz, Oct 18 2024

A376603 Points of nonzero curvature in the sequence of composite numbers (A002808).

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 13, 17, 19, 23, 24, 26, 28, 30, 31, 35, 36, 40, 42, 46, 47, 49, 51, 55, 56, 58, 59, 63, 64, 70, 71, 73, 75, 77, 79, 81, 82, 94, 95, 97, 98, 102, 104, 112, 114, 118, 119, 123, 124, 126, 127, 131, 132, 136, 138, 146, 148, 150, 152, 162, 163
Offset: 1

Views

Author

Gus Wiseman, Oct 05 2024

Keywords

Comments

These are points at which the second differences (A073445) are nonzero.

Examples

			The composite numbers (A002808) are:
  4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ...
with first differences (A073783):
  2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, ...
with first differences (A073445):
  0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, ...
with nonzero terms at (A376603):
  2, 4, 6, 8, 10, 12, 13, 17, 19, 23, 24, 26, 28, 30, 31, 35, 36, 40, 42, 46, 47, ...
		

Crossrefs

Partitions into composite numbers are counted by A023895, factorizations A050370.
These are the positions of nonzero terms in A073445.
For first differences we had A073783, ones A375929, complement A065890.
For prime instead of composite we have A333214.
The complement is A376602.
For upward concavity (instead of nonzero) we have A376651, downward A376652.
For composite numbers: A002808 (terms), A073783 (first differences), A073445 (second differences), A376602 (zeros), A376651 (concave-up), A376652 (concave-down).
For nonzero curvature: A333214 (prime), A376589 (non-perfect-power), A376592 (squarefree), A376595 (nonsquarefree), A376598 (prime-power), A376601 (non-prime-power).

Programs

  • Mathematica
    Join@@Position[Sign[Differences[Select[Range[100],CompositeQ],2]],1|-1]

A376681 Row sums of the absolute value of the array A095195(n, k) = n-th term of the k-th differences of the prime numbers (A000040).

Original entry on oeis.org

2, 4, 8, 10, 22, 36, 72, 134, 266, 500, 874, 1418, 2044, 2736, 4626, 15176, 41460, 95286, 196368, 372808, 660134, 1092790, 1682198, 2384724, 3147706, 4526812, 11037090, 36046768, 93563398, 214796426, 452129242, 885186658, 1619323680, 2763448574, 4368014812
Offset: 1

Views

Author

Gus Wiseman, Oct 15 2024

Keywords

Examples

			The fourth row of A095195 is: (7, 2, 0, -1), so a(4) = 10.
		

Crossrefs

For firsts instead of row-sums we have A007442 (modern version of A030016).
This is the absolute version of A140119.
If 1 is considered prime (A008578) we get A376684, absolute version of A376683.
For first zero-positions we have A376678 (modern version of A376855).
For composite instead of prime we have A377035.
For squarefree instead of prime we have A377040, nonsquarefree A377048.
A000040 lists the modern primes, differences A001223, seconds A036263.
A008578 lists the noncomposites, differences A075526, seconds A036263 with 0 prepended.

Programs

  • Mathematica
    nn=15;
    t=Table[Take[Differences[NestList[NestWhile[#+1&, #+1,!PrimeQ[#]&]&,2,2*nn],k],nn],{k,0,nn}]
    Total/@Abs/@Table[t[[j,i-j+1]],{i,nn},{j,i}]

Extensions

More terms from Pontus von Brömssen, Oct 17 2024

A376652 Points of downward concavity in the sequence of composite numbers (A002808).

Original entry on oeis.org

2, 6, 10, 13, 19, 24, 28, 31, 36, 42, 47, 51, 56, 59, 64, 71, 75, 79, 82, 95, 98, 104, 114, 119, 124, 127, 132, 138, 148, 152, 163, 174, 178, 181, 187, 196, 201, 206, 212, 217, 221, 230, 243, 247, 250, 263, 268, 278, 281, 286, 293, 298, 303, 306, 311, 318, 321
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2024

Keywords

Comments

These are points at which the second differences (A073445) are negative.
Also positions of strict descents in the first differences (A073783) of composite numbers (A002808).

Examples

			The composite numbers are (A002808):
  4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ...
with first differences (A073783):
  2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, ...
with second differences (A073445):
  0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, ...
with negative terms at (A376651):
  2, 6, 10, 13, 19, 24, 28, 31, 36, 42, 47, 51, 56, 59, 64, 71, 75, 79, 82, 95, 98, ...
		

Crossrefs

The version for A000002 is A156242, positive A022297.
Partitions into composite numbers are counted by A023895, factorizations A050370.
For first differences we had A065310 or A073783, ones A375929.
These are the positions of negative terms in A073445, positive A376651.
For prime instead of composite we have A258026, positive A258025.
For zero second differences instead of negative we have A376602.
For composite numbers: A002808 (terms), A073783 (first differences), A073445 (second differences), A376602 (inflections and undulations), A376603 (nonzero curvature), A376651 (concave-up).

Programs

  • Maple
    Comps:= remove(isprime, [seq(i,i=4..1000)]):
    D1:= Comps[2..-1]-Comps[1..-2]:
    D2:= D1[2..-1]-D1[1..-2]:
    select(t -> D2[t] < 0, [$1..nops(D2)]); # Robert Israel, Nov 06 2024
  • Mathematica
    Join@@Position[Sign[Differences[Select[Range[1000],CompositeQ],2]],-1]

A376680 Run-lengths of first differences of composite numbers.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 1, 4, 2, 4, 1, 2, 2, 2, 1, 4, 1, 4, 2, 4, 1, 2, 2, 4, 1, 2, 1, 4, 1, 6, 1, 2, 2, 2, 2, 2, 1, 12, 1, 2, 1, 4, 2, 8, 2, 4, 1, 4, 1, 2, 1, 4, 1, 4, 2, 8, 2, 2, 2, 10, 1, 10, 1, 2, 2, 2, 1, 4, 2, 8, 1, 4, 1, 4, 1, 4, 2, 4, 1, 2, 2, 8, 1, 12, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 10 2024

Keywords

Comments

Also first differences of A376603 (points of nonzero curvature in the composite numbers).

Examples

			The composite numbers (A002808) are:
  4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ...
with first differences (A073783):
  2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, ...
with runs:
  (2,2), (1,1), (2,2), (1,1), (2,2), (1,1), (2), (1,1,1,1), (2,2), (1,1,1,1), ...
with lengths (A376680):
  2, 2, 2, 2, 2, 2, 1, 4, 2, 4, 1, 2, 2, 2, 1, 4, 1, 4, 2, 4, 1, 2, 2, 4, 1, 2, ...
		

Crossrefs

These are the run-lengths of A073783, ones A375929.
For prime instead of composite we have A333254, first appearances A335406.
These are the first differences of A376603.
A000040 lists the prime numbers, first differences A001223, second differences A036263.
A002808 lists the composite numbers, differences A073783.
A064113 lists positions of adjacent equal prime gaps.
A073445 gives second differences of composite numbers, zeros A376602.

Programs

  • Mathematica
    Length/@Split[Differences[Select[Range[100],CompositeQ]]]
Showing 1-10 of 12 results. Next