cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A192744 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.

Original entry on oeis.org

1, 1, 3, 8, 29, 133, 762, 5215, 41257, 369032, 3676209, 40333241, 483094250, 6271446691, 87705811341, 1314473334832, 21017294666173, 357096406209005, 6424799978507178, 122024623087820183, 2439706330834135361, 51219771117454755544
Offset: 0

Views

Author

Clark Kimberling, Jul 09 2011

Keywords

Comments

The titular polynomial is defined recursively by p(n,x)=x*p(n-1,x)+n! for n>0, where p(0,x)=1; see the Example. For an introduction to polynomial reduction, see A192232. The discussion at A192232 Comments continues here:
...
Let R(p,q,s) denote the "reduction of polynomial p by q->s" as defined at A192232. Suppose that q(x)=x^k for some k>0 and that s(x)=s(k,0)*x^(k-1)+s(k,1)*x^(k-2)+...+s(k,k-2)x+s(k,k-1).
...
First, we shall take p(x)=x^n, where n>=0; the results will be used to formulate R(p,q,s) for general p. Represent R(x^n,q,s) by
...
R(x^n)=s(n,0)*x^(k-1)+s(n,1)*x^(k-2)+...+s(n,k-2)*x+s(n,k-1).
...
Then each of the sequences u(n)=s(n,h), for h=0,1,...,k-1, satisfies this linear recurrence relation:
...
u(n)=s(k,0)*u(n-1)+s(k,1)*u(n-2)+...+s(k,k-2)*u(n-k-1)+s(k,k-1)*u(n-k), with initial values tabulated here:
...
n: ..s(n,0)...s(n,1)..s(n,2).......s(n,k-2)..s(n,k-1)
0: ....0........0.......0..............0.......1
1: ....0........0.......0..............1.......0
...
k-2: ..0........1.......0..............0.......0
k-1: ..0........0.......0..............0.......0
k: ..s(k,0)...s(k,1)..s(k,2).......s(k,k-2)..s(k,k-1)
...
That completes the formulation for p(x)=x^n. Turning to the general case, suppose that
...
p(n,x)=p(n,0)*x^n+p(n,1)*x^(n-1)+...+p(n,n-1)*x+p(n,n)
...
is a polynomial of degree n>=0. Then the reduction denoted by (R(p(n,x) by x^k -> s(x)) is the polynomial of degree k-1 given by the matrix product P*S*X, where P=(p(n,0)...p(n,1).........p(n-k)...p(n,n-k+1); X has all 0's except for main diagonal (x^(k-1), x^(k-2)...x,1); and S has
...
row 1: ... s(n,0) ... s(n,1) ...... s(n,k-2) . s(n,k-1)
row 2: ... s(n-1,0) . s(n-1,1) .... s(n-1,k-2) s(n-1,k-1)
...
row n-k+1: s(k,0).... s(k,1) ...... s(k,k-2) ..s(k,k-1)
row n-k+2: p(n,n-k+1) p(n,n-k+2) .. p(n,n-1) ..p(n,n)
*****
As a class of examples, suppose that (v(n)), for n>=0, is a sequence, that p(0,x)=1, and p(n,x)=v(n)+p(n-1,x) for n>0. If q(x)=x^2 and s(x)=x+1, and we write the reduction R(p(n,x)) as u1(n)*x+u2(n), then the sequences u1 and u2 are convolutions with the Fibonacci sequence, viz., let F=(0,1,1,2,3,5,8,...)=A000045 and let G=(1,0,1,1,2,3,5,8...); then u1=G**v and u2=F**v, where ** denotes convolution. Examples (with a few exceptions for initial terms):
...
If v(n)=n! then u1=A192744, u2=A192745.
If v(n)=n+1 then u1=A000071, u2=A001924.
If v(n)=2n then u1=A014739, u2=A027181.
If v(n)=2n+1 then u1=A001911, u2=A001891.
If v(n)=3n+1 then u1=A027961, u2=A023537.
If v(n)=3n+2 then u1=A192746, u2=A192747.
If v(n)=3n then u1=A154691, u2=A192748.
If v(n)=4n+1 then u1=A053311, u2=A192749.
If v(n)=4n+2 then u1=A192750, u2=A192751.
If v(n)=4n+3 then u1=A192752, u2=A192753.
If v(n)=4n then u1=A147728, u2=A023654.
If v(n)=5n+1 then u1=A192754, u2=A192755.
If v(n)=5n then u1=A166863, u2=A192756.
If v(n)=floor((n+1)tau) then u1=A192457, u2=A023611.
If v(n)=floor((n+2)/2) then u1=A052952, u2=A129696.
If v(n)=floor((n+3)/3) then u1=A004695, u2=A178982.
If v(n)=floor((n+4)/4) then u1=A080239, u2=A192758.
If v(n)=floor((n+5)/5) then u1=A124502, u2=A192759.
If v(n)=n+2 then u1=A001594, u2=A192760.
If v(n)=n+3 then u1=A022318, u2=A192761.
If v(n)=n+4 then u1=A022319, u2=A192762.
If v(n)=2^n then u1=A027934, u2=A008766.
If v(n)=3^n then u1=A106517, u2=A094688.

Examples

			The first five polynomials and their reductions:
1 -> 1
1+x -> 1+x
2+x+x^2 -> 3+2x
6+2x+x^2+x^3 -> 8+5x
24+6x+2x^2+x^3+x^4 -> 29+13x, so that
A192744=(1,1,3,8,29,...) and A192745=(0,1,2,5,13,...).
		

Crossrefs

Cf. A192232.

Programs

  • Maple
    A192744p := proc(n,x)
        option remember;
        if n = 0 then
            1;
        else
            x*procname(n-1,x)+n! ;
            expand(%) ;
        end if;
    end proc:
    A192744 := proc(n)
        local p;
        p := A192744p(n,x) ;
        while degree(p,x) > 1 do
            p := algsubs(x^2=x+1,p) ;
            p := expand(p) ;
        end do:
        coeftayl(p,x=0,0) ;
    end proc: # R. J. Mathar, Dec 16 2015
  • Mathematica
    q = x^2; s = x + 1; z = 40;
    p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + n!;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}] :=
    FixedPoint[(s PolynomialQuotient @@ #1 +
           PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
      (* A192744 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
      (* A192745 *)

Formula

G.f.: (1-x)/(1-x-x^2)/Q(0), where Q(k)= 1 - x*(k+1)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 20 2013
Conjecture: a(n) +(-n-2)*a(n-1) +2*(n-1)*a(n-2) +3*a(n-3) +(-n+2)*a(n-4)=0. - R. J. Mathar, May 04 2014
Conjecture: (-n+2)*a(n) +(n^2-n-1)*a(n-1) +(-n^2+3*n-3)*a(n-2) -(n-1)^2*a(n-3)
=0. - R. J. Mathar, Dec 16 2015

A122195 Numbers that are the sum of exactly 3 sets of Fibonacci numbers.

Original entry on oeis.org

8, 11, 13, 14, 18, 19, 22, 23, 30, 31, 36, 38, 49, 51, 59, 62, 80, 83, 96, 101, 130, 135, 156, 164, 211, 219, 253, 266, 342, 355, 410, 431, 554, 575, 664, 698, 897, 931, 1075, 1130, 1452, 1507, 1740, 1829, 2350, 2439, 2816, 2960, 3803, 3947, 4557, 4790, 6154
Offset: 1

Views

Author

Ron Knott, Aug 25 2006, corrected Aug 29 2006

Keywords

Examples

			8 is the sum of only 3 sets of Fibonacci numbers: {8}, {3,5} and {1,2,5};
11 is the sum of only {3,8}, {1,2,8}, {1,2,3,5}.
		

Crossrefs

Programs

  • GAP
    a:=[11,13,14,18,19,22,23,30];; for n in [9..60] do a[n]:=a[n-4]+a[n-8]+1; od; Concatenation([8], a); # G. C. Greubel, Jul 13 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (8+3*x+2*x^2+x^3-4*x^4-2*x^5+x^6-5*x^8-3*x^9)/(1 - x-x^4+x^5-x^8+x^9) )); // G. C. Greubel, Jul 13 2019
    
  • Maple
    # first N terms:
    series((8+3*x+2*x^2+x^3-4*x^4-2*x^5+x^6-5*x^8-3*x^9)/(x^9-x^8+x^5-x^4-x+1),x,N+1);
  • Mathematica
    CoefficientList[Series[(8+3*x+2*x^2+x^3-4*x^4-2*x^5+x^6-5*x^8-3*x^9)/(1 - x-x^4+x^5-x^8+x^9), {x, 0, 60}], x] (* G. C. Greubel, Jul 13 2019 *)
  • PARI
    my(x='x+O('x^60)); Vec((8+3*x+2*x^2+x^3-4*x^4-2*x^5+x^6-5*x^8 -3*x^9)/(1-x-x^4+x^5-x^8+x^9)) \\ G. C. Greubel, Jul 13 2019
    
  • Sage
    ((8+3*x+2*x^2+x^3-4*x^4-2*x^5+x^6-5*x^8-3*x^9)/(1 - x-x^4+x^5-x^8+x^9)).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Jul 13 2019
    

Formula

G.f.: (8+3*x+2*x^2+x^3-4*x^4-2*x^5+x^6-5*x^8-3*x^9)/(1-x-x^4+x^5-x^8+x^9).
a(n) = a(n-4) + a(n-8) + 1.
a(0)=8, a(1)=11, a(2)=13, a(3)=18, then: a(4n) = A022318(n+3) = 2*A000045(n+5) + A000045(n+3) - 1, a(4n+1) = A022406(n+2) = 4*A000045(n+4) - 1, a(4n+2) = A022308(n+4) = 2*A000045(n+4) + A000045(n+6) - 1, a(4n+3) = 3*A000045(n+4) - 1, for n>=1.
a(n) = a(n-1) +a(n-4) -a(n-5) +a(n-8) -a(n-9). - G. C. Greubel, Jul 13 2019

A192761 Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.

Original entry on oeis.org

0, 1, 5, 11, 22, 40, 70, 119, 199, 329, 540, 882, 1436, 2333, 3785, 6135, 9938, 16092, 26050, 42163, 68235, 110421, 178680, 289126, 467832, 756985, 1224845, 1981859, 3206734, 5188624, 8395390, 13584047, 21979471, 35563553, 57543060, 93106650
Offset: 0

Views

Author

Clark Kimberling, Jul 09 2011

Keywords

Comments

The titular polynomial is defined recursively by p(n,x) = x*(n-1,x) + n + 3 for n > 0, where p(0,x) = 1. For discussions of polynomial reduction, see A192232 and A192744.
Construct a triangle with T(n,0) = n*(n+1)+1 and T(n,n) = (n+1)*(n+2)/2 starting at n=0. Define the interior terms by T(r,c) = T(r-2,c-1) + T(r-1,c). The sequence of its row sums is 1, 6, 17, 39, 79, 149, 268, 467,... and the first differences of these (the sum of the terms in row(n) less those in row(n-1)) equals a(n+1). - J. M. Bergot, Mar 10 2013

Crossrefs

Cf. A192744, A192232, partial sums of A022318.

Programs

  • Mathematica
    q = x^2; s = x + 1; z = 40;
    p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + n + 3;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}] :=
    FixedPoint[(s PolynomialQuotient @@ #1 +
           PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
      (* A022318 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
      (* A192761 *)

Formula

a(n) = 3*a(n-1)-2*a(n-2)-a(n-3)+a(n-4). G.f.: x*(2*x^2-2*x-1) / ((x-1)^2*(x^2+x-1)). [Colin Barker, Dec 08 2012]
Showing 1-3 of 3 results.