cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022380 Fibonacci sequence beginning 3, 12.

Original entry on oeis.org

3, 12, 15, 27, 42, 69, 111, 180, 291, 471, 762, 1233, 1995, 3228, 5223, 8451, 13674, 22125, 35799, 57924, 93723, 151647, 245370, 397017, 642387, 1039404, 1681791, 2721195, 4402986, 7124181, 11527167, 18651348, 30178515, 48829863, 79008378
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [-(3/2)*(Fibonacci(n+1)-3*Lucas(n+1)): n in [0..40]]; // Vincenzo Librandi, Jan 09 2020
  • Mathematica
    a[0]=3; a[1] = 12; a[n_]:= a[n-1] +  a[n-2]; Table[a[n],{n,0,30}] (* or *) LinearRecurrence[{1,1},{3,12},31] (* Indranil Ghosh, Feb 19 2017 *)
    Table[-(3/2)(Fibonacci[n]-3*LucasL[ n]),{n,40}] (* Harvey P. Dale, Aug 22 2019 *)

Formula

G.f.: (3+9*x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = (2^(-n-1)/5)*((15+21*sqrt(5))*(1+sqrt(5))^n + (15-21*sqrt(5))*(1-sqrt(5))^n). - Bogart B. Strauss, Oct 27 2013
a(n) = -(3/2)*(A000045(n+1)-3*A000032(n+1)). - Harvey P. Dale, Aug 22 2019
a(n) = 3*A000285(n). - R. J. Mathar, Jan 08 2020
E.g.f.: 3*(cosh(x/2) + sinh(x/2))*(sqrt(5)*cosh(sqrt(5)*x/2) + 7*sinh(sqrt(5)*x/2))/sqrt(5). - Stefano Spezia, Dec 31 2024