A022380 Fibonacci sequence beginning 3, 12.
3, 12, 15, 27, 42, 69, 111, 180, 291, 471, 762, 1233, 1995, 3228, 5223, 8451, 13674, 22125, 35799, 57924, 93723, 151647, 245370, 397017, 642387, 1039404, 1681791, 2721195, 4402986, 7124181, 11527167, 18651348, 30178515, 48829863, 79008378
Offset: 0
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..4771
- Tanya Khovanova, Recursive Sequences.
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Programs
-
Magma
[-(3/2)*(Fibonacci(n+1)-3*Lucas(n+1)): n in [0..40]]; // Vincenzo Librandi, Jan 09 2020
-
Mathematica
a[0]=3; a[1] = 12; a[n_]:= a[n-1] + a[n-2]; Table[a[n],{n,0,30}] (* or *) LinearRecurrence[{1,1},{3,12},31] (* Indranil Ghosh, Feb 19 2017 *) Table[-(3/2)(Fibonacci[n]-3*LucasL[ n]),{n,40}] (* Harvey P. Dale, Aug 22 2019 *)
Formula
G.f.: (3+9*x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = (2^(-n-1)/5)*((15+21*sqrt(5))*(1+sqrt(5))^n + (15-21*sqrt(5))*(1-sqrt(5))^n). - Bogart B. Strauss, Oct 27 2013
a(n) = 3*A000285(n). - R. J. Mathar, Jan 08 2020
E.g.f.: 3*(cosh(x/2) + sinh(x/2))*(sqrt(5)*cosh(sqrt(5)*x/2) + 7*sinh(sqrt(5)*x/2))/sqrt(5). - Stefano Spezia, Dec 31 2024