A022388 Fibonacci sequence beginning 6, 13.
6, 13, 19, 32, 51, 83, 134, 217, 351, 568, 919, 1487, 2406, 3893, 6299, 10192, 16491, 26683, 43174, 69857, 113031, 182888, 295919, 478807, 774726, 1253533, 2028259, 3281792, 5310051, 8591843, 13901894, 22493737, 36395631, 58889368, 95284999, 154174367, 249459366, 403633733, 653093099
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Programs
-
GAP
List([0..40], n-> 6*Fibonacci(n+2) + Fibonacci(n)); # G. C. Greubel, Jun 30 2019
-
Magma
[6*Fibonacci(n+2) + Fibonacci(n): n in [0..40]]; // G. C. Greubel, Mar 02 2018
-
Mathematica
Table[6*Fibonacci[n+2] + Fibonacci[n], {n, 0, 40}] (* or *) LinearRecurrence[{1,1}, {6,13}, 40] (* G. C. Greubel, Mar 02 2018 *)
-
PARI
vector(40, n, n--; 6*fibonacci(n+2) + fibonacci(n)) \\ G. C. Greubel, Mar 02 2018
-
Sage
[6*fibonacci(n+2) + fibonacci(n) for n in (0..40)] # G. C. Greubel, Jun 30 2019
Formula
G.f.: (6+7*x)/(1-x-x^2). - Philippe Deléham, Nov 20 2008
a(n) = 6*Fibonacci(n+2) + Fibonacci(n) = 6*Fibonacci(n-1) + 13*Fibonacci(n). - G. C. Greubel, Mar 02 2018
From Klaus Purath, Jul 29 2019: (Start)
L = Lucas (A000032), F = Fibonacci (A000045). All involved sequences extended to negative indices, following the rule a(n-1) = a(n+1) - a(n).
a(n+1) - a(n-4) = L(n)*11.
a(n) = L(n-1) + L(n+4).
a(n) = 3*L(n+1) + L(n+2) = L(n) + 4*L(n+1) = L(n+6) - 4*L(n+2).
a(n) = L(n+1) + 5*F(n+2) = L(n+5) - 5*F(n+1).
a(n) = (7*L(n+1) + 5*F(n+1))/2.
a(n) = (13*L(n+1) + L(n+5) - 5*F(n))/4.
a(n) = 7*F(n) + 6*F(n+1) = 7*F(n+2) - F(n+1).
a(n) = 8*F(n+2) - F(n+3) = 17*F(n+4) - 9*F(n+5).
The following six formulas apply for all sequences of the Fibonacci type.
a(n) = L(2*m)*a(n+2*m) - a(n+4*m).
a(n) = (F(m+2)*a(n+2) - a(m+n+2))/F(m).
a(n) = F(n-m-1)*a(m) + F(n-m)*a(m+1).
a(n)^2 + a(n+3)^2 = 2*(a(n+1)^2 + a(n+2)^2).
a(n)^2 + a(n+2)^2 + a(n+1)^2 + a(n+3)^2 = 3*(a(n)*a(n+2) + a(n+1)*a(n+3)).
3*a(n+2)*a(n+1)*a(n) = a(n+2)^3 - a(n+1)^3 - a(n)^3. (End)
E.g.f.: exp(-2*x/(1+sqrt(5)))*(-15-sqrt(5)+(45+19*sqrt(5))*exp(sqrt(5)*x))/(5+3*sqrt(5)). - Stefano Spezia, Aug 16 2019
Extensions
Terms a(36) onward added by G. C. Greubel, Mar 02 2018
Comments