cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022393 Fibonacci sequence beginning 1, 23.

Original entry on oeis.org

1, 23, 24, 47, 71, 118, 189, 307, 496, 803, 1299, 2102, 3401, 5503, 8904, 14407, 23311, 37718, 61029, 98747, 159776, 258523, 418299, 676822, 1095121, 1771943, 2867064, 4639007, 7506071, 12145078, 19651149, 31796227, 51447376, 83243603, 134690979, 217934582, 352625561, 570560143
Offset: 0

Views

Author

Keywords

Comments

a(n-1) = Sum_{k=0..ceiling((n-1)/2)} P(23;n-1-k,k), n>=1, with a(-1)=22. These are the SW-NE diagonals in P(23;n,k), the (23,1) Pascal triangle. Cf. A093645 for the (10,1) Pascal triangle. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.

Programs

  • GAP
    List([0..40],n->Fibonacci(n+2)+21*Fibonacci(n)); # Muniru A Asiru, Mar 03 2018
  • Magma
    [Fibonacci(n+2) + 21*Fibonacci(n): n in [0..50]]; // G. C. Greubel, Mar 02 2018
    
  • Mathematica
    a[1]=1; a[2]=23; a[n_]:=a[n]=a[n - 1]+a[n - 2] (*  José María Grau Ribas, Feb 15 2010 *)
    LinearRecurrence[{1,1},{1,23},30] (* Harvey P. Dale, Sep 30 2011 *)
    Table[Fibonacci[n + 2] + 21*Fibonacci[n], {n, 0, 50}] (* G. C. Greubel, Mar 02 2018 *)
  • PARI
    for(n=0, 50, print1(fibonacci(n+2) + 21*fibonacci(n), ", ")) \\ G. C. Greubel, Mar 02 2018
    

Formula

a(n) = a(n-1) + a(n-2), n>=2, a(0)=1, a(1)=23. a(-1):=22.
G.f.: (1+22*x)/(1-x-x^2).

Extensions

Terms a(30) onward added by G. C. Greubel, Mar 02 2018