cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022403 a(0)=a(1)=3; thereafter a(n) = a(n-1) + a(n-2) + 1.

Original entry on oeis.org

3, 3, 7, 11, 19, 31, 51, 83, 135, 219, 355, 575, 931, 1507, 2439, 3947, 6387, 10335, 16723, 27059, 43783, 70843, 114627, 185471, 300099, 485571, 785671, 1271243, 2056915, 3328159, 5385075, 8713235, 14098311, 22811547, 36909859, 59721407, 96631267, 156352675, 252983943, 409336619, 662320563
Offset: 0

Views

Author

Keywords

Crossrefs

See A022406 for a similar sequence.

Programs

  • Magma
    [4*Fibonacci(n+1) - 1: n in [0..40]]; // G. C. Greubel, Mar 01 2018
  • Mathematica
    Table[4*Fibonacci[n+1] -1,{n, 0, 31}] (* Vladimir Joseph Stephan Orlovsky, Apr 03 2011 *)
    RecurrenceTable[{a[0]==a[1]==3,a[n]==a[n-1]+a[n-2]+1},a,{n,40}] (* or *) LinearRecurrence[{2,0,-1},{3,3,7},50] (* Harvey P. Dale, Jan 10 2021 *)
  • PARI
    for(n=0, 40, print1(4*fibonacci(n+1) -1, ", ")) \\ G. C. Greubel, Mar 01 2018
    

Formula

From R. J. Mathar, Mar 11 2011: (Start)
a(n+1) - a(n) = A022087(n).
G.f.: ( 3-3*x+x^2 ) / ( (x-1)*(x^2+x-1) ). (End)
a(n) = 4*Fibonacci(n+1) - 1. - G. C. Greubel, Mar 01 2018
a(n) = (-1 + (2^(1-n)*(-(1-sqrt(5))^(1+n) + (1+sqrt(5))^(1+n))) / sqrt(5)). - Colin Barker, Mar 02 2018

Extensions

Terms a(32) onward added by G. C. Greubel, Mar 01 2018