A022449 c(p(n)) where p(k) is k-th prime including p(1)=1 and c(k) is k-th composite number.
4, 6, 8, 10, 14, 20, 22, 27, 30, 35, 44, 46, 54, 58, 62, 66, 75, 82, 85, 92, 96, 99, 108, 114, 120, 129, 134, 136, 142, 144, 148, 166, 171, 178, 182, 194, 196, 204, 210, 215, 221, 230, 232, 245, 247, 252, 254, 268, 285, 289, 291, 296, 302, 304, 318
Offset: 1
Keywords
Examples
a(5) = 14 because a(5) = composite(noncomposite(5)) = composite(7) =14. _Jaroslav Krizek_, Mar 13 2010
References
- C. Kimberling, Fractal sequences and interspersions, Ars Combinatoria, vol. 45 p 157 1997.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- C. Kimberling, Interspersions
Crossrefs
A065858 with a leading 4.
Programs
-
Haskell
a022449 = a002808 . a008578 a022449_list = map a002808 a008578_list -- Reinhard Zumkeller, Jan 12 2013
-
Maple
A022449 := proc(n) A002808(A008578(n)) ; end proc: seq(A022449(n),n=1..40) ; # R. J. Mathar, Jan 28 2014
-
Mathematica
p[1] = 1; p[n_] := Prime[n - 1]; Composite[n_] := FixedPoint[n + PrimePi[#] + 1 & , n + PrimePi[n] + 1]; a[n_] := Composite[p[n]]; Array[a, 100] (* Jean-François Alcover, Jan 26 2018, after Robert G. Wilson v *)
Formula
Extensions
Definition corrected by Christopher M. Tomaszewski (cmt1288(AT)comcast.net), Mar 30 2005
Comments