Original entry on oeis.org
1, 5, 9, 9, 9, 15, 16, 17, 18, 17, 25, 19, 21, 27, 31, 26, 21, 22, 21, 35, 38, 31, 35, 31, 34, 33, 37, 39, 49, 49, 33, 52, 49, 47, 39, 43, 47, 47, 48, 48, 41, 49, 48, 60, 59, 59, 49, 52, 58, 58, 63, 71, 75, 65, 65, 67, 71, 79, 75, 81, 84, 77, 65, 69, 72, 72, 67, 69, 61, 65, 65
Offset: 1
-
c[n_Integer] := FixedPoint[n+PrimePi[ # ]+1&, n] Table[Prime[c[w]]-c[Prime[w]], {w, 1, 10000}];
A050435
a(n) = composite(composite(n)), where composite = A002808, composite numbers.
Original entry on oeis.org
9, 12, 15, 16, 18, 21, 24, 25, 26, 28, 32, 33, 34, 36, 38, 39, 40, 42, 45, 48, 49, 50, 51, 52, 55, 56, 57, 60, 63, 64, 65, 68, 69, 70, 72, 74, 76, 77, 78, 80, 81, 84, 86, 87, 88, 90, 91, 93, 94, 95, 98, 100, 102, 104, 105, 106, 110, 111, 112, 115, 116, 117, 118, 119
Offset: 1
Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999
The 2nd composite number is 6 and the 6th composite number is 12, so a(2) = 12. a(100) = A002808(A002808(100)) = A002808(133) = 174.
-
a050435 = a002808 . a002808
a050435_list = map a002808 a002808_list
-- Reinhard Zumkeller, Jan 12 2013
-
Select[ Range[ 6, 150 ], ! PrimeQ[ # ] && ! PrimeQ[ # - PrimePi[ # ] - 1 ] & ]
With[{cmps=Select[Range[200],CompositeQ]},Table[cmps[[cmps[[n]]]],{n,70}]] (* Harvey P. Dale, Feb 18 2018 *)
-
composite(n)=my(k=-1); while(-n + n += -k + k=primepi(n), ); n \\ M. F. Hasler
a(n)=composite(composite(n)) \\ Charles R Greathouse IV, Jun 25 2017
-
from sympy import composite
def a(n): return composite(composite(n))
print([a(n) for n in range(1, 65)]) # Michael S. Branicky, Sep 12 2021
A065858
m-th composite number c(m) = A002808(m), where m is the n-th prime number: a(n) = A002808(A000040(n)).
Original entry on oeis.org
6, 8, 10, 14, 20, 22, 27, 30, 35, 44, 46, 54, 58, 62, 66, 75, 82, 85, 92, 96, 99, 108, 114, 120, 129, 134, 136, 142, 144, 148, 166, 171, 178, 182, 194, 196, 204, 210, 215, 221, 230, 232, 245, 247, 252, 254, 268, 285, 289, 291, 296, 302, 304, 318, 324, 330, 338
Offset: 1
-
P,C:= selectremove(isprime,[seq(i,i=2..10^3)]):
seq(C[P[i]],i=1..100); # Robert Israel, Mar 09 2025
-
Composite[n_] := FixedPoint[n + PrimePi[#] + 1 & , n + PrimePi[n] + 1];
a[n_] := Composite[Prime[n]];
Array[a, 100] (* Jean-François Alcover, Jan 26 2018, after Robert G. Wilson v *)
A059981
Order of compositeness for the n-th composite number.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 4, 1, 3, 1, 2, 4, 2, 1, 3, 4, 5, 2, 4, 1, 2, 1, 3, 5, 3, 2, 4, 1, 5, 6, 3, 1, 5, 1, 2, 3, 2, 1, 4, 6, 4, 3, 5, 1, 2, 6, 7, 4, 2, 1, 6, 1, 2, 3, 4, 3, 2, 1, 5, 7, 5, 1, 4, 1, 6, 2, 3, 7, 8, 1, 5, 3, 2, 1, 7, 2, 3, 4
Offset: 1
16 is 9th composite number, so S(16)=9, 9 is 4th composite, so S(S(16))=4, 4 is first composite number, so S(S(S(16)))=1, not a composite number. Thus a(9)=3.
4 is the first composite number, so S(4)=1, not a composite number. Thus a(1)=1.
-
Composite[ n_Integer ] := (k = n + PrimePi[ n ] + 1; While[ k != n + PrimePi[ k ] + 1, k++ ]; k); CompositePi[ n_Integer ] := (n - 1 - PrimePi[ n ]); Attributes[ Composite ] = Attributes[ CompositePi ] = Listable; Table[ c = 1; k = CompositePi[ Composite[ n ] ]; While[ ! (PrimeQ[ k ] || k == 1), k = CompositePi[ k ]; c++ ]; c, {n, 100} ]
A073169
a(n)=A002808(n)-n, difference between n-th composite and n.
Original entry on oeis.org
3, 4, 5, 5, 5, 6, 7, 7, 7, 8, 9, 9, 9, 10, 10, 10, 10, 10, 11, 12, 12, 12, 12, 12, 13, 13, 13, 14, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 19, 19, 19, 19, 19, 20, 20, 20, 21, 22, 22, 22, 22, 22, 23, 23, 23, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 26, 26
Offset: 1
-
c[n_Integer] := FixedPoint[n+PrimePi[ # ]+1&, n] Table[c[w]-w, {w, 1, 128}]
With[{c=Select[Range[100],CompositeQ]},#[[1]]-#[[2]]&/@Thread[ {c,Range[ Length[ c]]}]] (* Harvey P. Dale, Feb 03 2015 *)
A236536
Array T(n,k) read along antidiagonals: the composites of order of compositeness n in row n.
Original entry on oeis.org
4, 6, 9, 8, 12, 16, 10, 15, 21, 26, 14, 18, 25, 33, 39, 20, 24, 28, 38, 49, 56, 22, 32, 36, 42, 55, 69, 78, 27, 34, 48, 52, 60, 77, 94, 106, 30, 40, 50, 68, 74, 84, 105, 125, 141, 35, 45, 57, 70, 93, 100, 115, 140, 164, 184, 44, 51, 64, 80, 95, 124, 133, 152, 183, 212, 236, 46, 63, 72, 88, 110, 126, 162, 174, 198, 235, 270, 299
Offset: 1
The array starts:
4, 6, 8, 10, 14, 20, 22, 27, 30, 35,...
9, 12, 15, 18, 24, 32, 34, 40, 45, 51,...
16, 21, 25, 28, 36, 48, 50, 57, 64, 72,...
26, 33, 38, 42, 52, 68, 70, 80, 88, 98,...
39, 49, 55, 60, 74, 93, 95,110,119,130,...
56, 69, 77, 84,100,124,126,145,156,170,...
78, 94,105,115,133,162,165,188,203,218,...
106,125,140,152,174,209,213,242,259,278,...
141,164,183,198,222,266,272,305,326,348,...
-
A236536 := proc(n,k)
option remember ;
if n = 1 then
A022449(k) ;
else
A002808(procname(n-1,k)) ;
end if:
end proc:
for d from 2 to 10 do
for k from d-1 to by -1 do
printf("%3d,",A236536(d-k,k)) ;
end do:
end do:
-
Composite[n_] := FixedPoint[n + PrimePi[#] + 1&, n + PrimePi[n] + 1];
T[n_, k_] := T[n, k] = If[n == 1, Composite[If[k == 1, 1, Prime[k - 1]]], Composite[T[n - 1, k]]];
Table[T[n - k + 1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Sep 16 2023 *)
A175251
Composites (A002808) with nonprime (A018252) subscripts.
Original entry on oeis.org
4, 9, 12, 15, 16, 18, 21, 24, 25, 26, 28, 32, 33, 34, 36, 38, 39, 40, 42, 45, 48, 49, 50, 51, 52, 55, 56, 57, 60, 63, 64, 65, 68, 69, 70, 72, 74, 76, 77, 78, 80, 81, 84, 86, 87, 88, 90, 91, 93, 94, 95, 98, 100
Offset: 1
a(5) = 16 because a(5) = c(b(5)) = c(9) = 16, c = composite, b = nonprime.
A260621
Let b(k, n) = number obtained when the map x->A002808(x) is applied k times to n; a(n) is the smallest k such that b(k, n) + 1 is prime.
Original entry on oeis.org
1, 1, 12, 2, 1, 1, 3, 11, 1, 1, 7, 9, 1, 2, 10, 4, 2, 1, 1, 6, 8, 3, 3, 1, 9, 3, 1, 1, 18, 3, 1, 5, 7, 2, 2, 1, 4, 8, 2, 14, 1, 1, 6, 17, 2, 6, 1, 4, 6, 1, 1, 2, 2, 3, 7, 1, 13, 6, 1, 4, 16, 5, 16, 1, 5, 31, 35, 3, 5, 2, 1, 2, 3, 1, 1, 2, 6, 1, 1, 12, 5, 1, 2
Offset: 1
When n = 3, writing Composite(x) for A002808(x):
1. Composite(3) = 8. 8 + 1 = 9 = 3^2. 9 is not prime.
2. Composite(8) = 15. 15 + 1 = 16 = 2^4. 16 is not prime.
3. Composite(15) = 25. 25 + 1 = 26 = 2*13. 26 is not prime.
4. Composite(25) = 38. 38 + 1 = 39 = 3*13. 39 is not prime.
5. Composite(38) = 55. 55 + 1 = 56 = 2^3*7. 56 is not prime.
6. Composite(55) = 77. 77 + 1 = 78 = 2*3*13. 78 is not prime.
7. Composite(77) = 105. 105 + 1 = 106 = 2*53. 106 is not prime.
8. Composite(105) = 140. 140 + 1 = 141 = 3*47. 141 is not prime.
9. Composite(140) = 183. 183 + 1 = 184 = 2^3*23. 184 is not prime.
10. Composite(183) = 235. 235 + 1 = 236 = 2^2*59. 236 is not prime.
11. Composite(235) = 298. 298 + 1 = 299 = 13*23. 299 is not prime.
12. Composite(298) = 372. 372 + 1 = 373. 373 is prime.
--------------------------------------------------------------
Since the composite function was applied 12 times, a(3)=12.
Composites with order n = b, n >= 1:
A022449.
Composites with prime subscripts:
A065858.
Composites without prime subscripts:
A175251.
-
c = Select[Range[10^5], CompositeQ]; Table[k = 1; While[! PrimeQ[Nest[c[[#]] &, n, k] + 1], k++]; k, {n, 120}] (* Michael De Vlieger, Jul 15 2016 *)
Showing 1-8 of 8 results.
Comments