cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A076236 a(n) = A050435(n) mod A002808(n).

Original entry on oeis.org

1, 0, 7, 7, 8, 9, 10, 10, 10, 10, 12, 12, 12, 12, 13, 13, 13, 14, 15, 16, 16, 16, 16, 16, 17, 17, 17, 18, 19, 19, 19, 20, 20, 20, 21, 22, 22, 22, 22, 23, 23, 24, 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 27, 28, 28, 28, 30, 30, 30, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 32
Offset: 1

Views

Author

Labos Elemer, Oct 08 2002

Keywords

Comments

Original name: Remainder when 2nd order composite, A050435(n), is divided by first order composite, A002808(n). - Michael De Vlieger, Dec 09 2018

Examples

			Let c(n) be the n-th composite number. a(1) = 1 since c(c(1)) mod c(1) = c(4) mod 4 = 9 mod 4 = 1. a(2) = 0 since c(c(2)) mod c(2) = c(6) mod 6 = 12 mod 6 = 0. - _Michael De Vlieger_, Dec 09 2018
		

Crossrefs

Programs

Formula

a(n) = A050435(n) mod A002808(n).

Extensions

Edited by Michael De Vlieger, Dec 09 2018

A076237 a(n) = A050435(n) mod n.

Original entry on oeis.org

0, 0, 0, 0, 3, 3, 3, 1, 8, 8, 10, 9, 8, 8, 8, 7, 6, 6, 7, 8, 7, 6, 5, 4, 5, 4, 3, 4, 5, 4, 3, 4, 3, 2, 2, 2, 2, 1, 0, 0, 40, 0, 0, 43, 43, 44, 44, 45, 45, 45, 47, 48, 49, 50, 50, 50, 53, 53, 53, 55, 55, 55, 55, 55, 56, 56, 56, 56, 56, 56, 57, 58, 59, 59, 60, 62, 63, 63, 64, 65, 65, 65, 67
Offset: 1

Views

Author

Labos Elemer, Oct 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{cmps=Select[Range[300],CompositeQ],c2},c2=Table[cmps[[cmps[[n]]]],{n,100}];Mod[#[[1]],#[[2]]]&/@Thread[{c2,Range[Length[c2]]}]] (* Harvey P. Dale, May 02 2022 *)

Formula

a(n) = Mod[cc[n], n] = Mod[A050435(n), n]

A022449 c(p(n)) where p(k) is k-th prime including p(1)=1 and c(k) is k-th composite number.

Original entry on oeis.org

4, 6, 8, 10, 14, 20, 22, 27, 30, 35, 44, 46, 54, 58, 62, 66, 75, 82, 85, 92, 96, 99, 108, 114, 120, 129, 134, 136, 142, 144, 148, 166, 171, 178, 182, 194, 196, 204, 210, 215, 221, 230, 232, 245, 247, 252, 254, 268, 285, 289, 291, 296, 302, 304, 318
Offset: 1

Views

Author

Keywords

Comments

a(n) U A050435(n) = A002808(n), a(n+1) U A175251(n) = A002808(n) for n >= 1. a(n) = A065858(n-1) = composites (A002808) with prime (A000040) subscripts for n >=2. [From Jaroslav Krizek, Mar 13 2010]

Examples

			a(5) = 14 because a(5) = composite(noncomposite(5)) = composite(7) =14. _Jaroslav Krizek_, Mar 13 2010
		

References

  • C. Kimberling, Fractal sequences and interspersions, Ars Combinatoria, vol. 45 p 157 1997.

Crossrefs

A065858 with a leading 4.

Programs

Formula

a(n) = A002808(A008578(n)). - Jaroslav Krizek, Mar 13 2010

Extensions

Definition corrected by Christopher M. Tomaszewski (cmt1288(AT)comcast.net), Mar 30 2005

A050439 Fifth-order composites.

Original entry on oeis.org

39, 49, 55, 56, 60, 69, 74, 77, 78, 84, 93, 94, 95, 100, 105, 106, 110, 115, 119, 124, 125, 126, 130, 133, 140, 141, 145, 152, 155, 156, 159, 162, 164, 165, 170, 174, 180, 183, 184, 188, 189, 198, 201, 202, 203, 206, 207, 209, 212, 213, 218, 222, 225, 231
Offset: 1

Views

Author

Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999

Keywords

Examples

			C(C(C(C(C(8))))) = C(C(C(C(15)))) = C(C(C(25))) = C(C(38)) = C(55) = 77. So 77 is in the sequence.
		

Crossrefs

Programs

  • Maple
    C := remove(isprime,[$4..1000]): seq(C[C[C[C[C[n]]]]],n=1..100);

Formula

Let C(n) be the n-th composite number, with C(1)=4. Then these are numbers C(C(C(C(C(n))))).

Extensions

More terms from Asher Auel Dec 15 2000

A050436 Third-order composites.

Original entry on oeis.org

16, 21, 25, 26, 28, 33, 36, 38, 39, 42, 48, 49, 50, 52, 55, 56, 57, 60, 64, 68, 69, 70, 72, 74, 77, 78, 80, 84, 87, 88, 90, 93, 94, 95, 98, 100, 104, 105, 106, 110, 111, 115, 117, 118, 119, 121, 122, 124, 125, 126, 130, 133, 135, 138, 140, 141, 145, 146, 147
Offset: 1

Views

Author

Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999

Keywords

Examples

			C(C(C(8))) = C(C(15)) = C(25) = 38. So 38 is in the sequence.
		

Crossrefs

Programs

  • Maple
    C := remove(isprime,[$4..1000]): seq(C[C[C[C[n]]]],n=1..100);
  • Mathematica
    Nest[Values@ KeySelect[MapIndexed[First@ #2 -> #1 &, #], CompositeQ] &, Select[Range@ 150, CompositeQ], 2] (* Michael De Vlieger, Jul 22 2017 *)

Formula

Let C(n) be the n-th composite number, with C(1)=4. Then these are numbers C(C(C(n))).

Extensions

More terms from Asher Auel Dec 15 2000

A050438 Fourth-order composites.

Original entry on oeis.org

26, 33, 38, 39, 42, 49, 52, 55, 56, 60, 68, 69, 70, 74, 77, 78, 80, 84, 88, 93, 94, 95, 98, 100, 105, 106, 110, 115, 118, 119, 121, 124, 125, 126, 130, 133, 138, 140, 141, 145, 146, 152, 154, 155, 156, 159, 160, 162, 164, 165, 170, 174, 176, 180, 183, 184
Offset: 1

Views

Author

Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999

Keywords

Examples

			C(C(C(C(8)))) = C(C(C(15))) = C(C(25)) = C(38) = 55. So 55 is in the sequence.
		

Crossrefs

Programs

  • Maple
    C := remove(isprime,[$4..1000]): seq(C[C[C[C[n]]]],n=1..100);

Formula

Let C(n) be the n-th composite number, with C(1)=4. Then these are numbers C(C(C(C(n)))).

Extensions

More terms from Asher Auel Dec 15 2000

A076239 Remainder when 3rd-order composite ccc(n) = A050436(n) is divided by n.

Original entry on oeis.org

0, 1, 1, 2, 3, 3, 1, 6, 3, 2, 4, 1, 11, 10, 10, 8, 6, 6, 7, 8, 6, 4, 3, 2, 2, 0, 26, 0, 0, 28, 28, 29, 28, 27, 28, 28, 30, 29, 28, 30, 29, 31, 31, 30, 29, 29, 28, 28, 27, 26, 28, 29, 29, 30, 30, 29, 31, 30, 29, 32, 31, 30, 29, 28, 29, 28, 27, 26, 26, 25, 26, 26, 26, 26, 26, 28, 29
Offset: 1

Views

Author

Labos Elemer, Oct 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    MapIndexed[Mod[#1, First@ #2] &, #] &@ Nest[Values@ KeySelect[ MapIndexed[ First@ #2 -> #1 &, #], CompositeQ] &, Select[Range@ 183, CompositeQ], 2] (* Michael De Vlieger, Jul 22 2017 *)

Formula

a(n) = ccc(n) mod n = A050436(n) mod n.

A175251 Composites (A002808) with nonprime (A018252) subscripts.

Original entry on oeis.org

4, 9, 12, 15, 16, 18, 21, 24, 25, 26, 28, 32, 33, 34, 36, 38, 39, 40, 42, 45, 48, 49, 50, 51, 52, 55, 56, 57, 60, 63, 64, 65, 68, 69, 70, 72, 74, 76, 77, 78, 80, 81, 84, 86, 87, 88, 90, 91, 93, 94, 95, 98, 100
Offset: 1

Views

Author

Jaroslav Krizek, Mar 13 2010

Keywords

Comments

a(n) = composite(nonprime(n)) = A002808(A018252(n)). a(n) U A065858(n) = A002808(n), a(n+1) U A022449(n) = A002808(n) for n >= 1. a(1) = 4, a(n) = A050435(n-1) = composites (A002808) with composite (A002808) subscripts for n >=2.

Examples

			a(5) = 16 because a(5) = c(b(5)) = c(9) = 16, c = composite, b = nonprime.
		

A050440 Sixth-order composites.

Original entry on oeis.org

56, 69, 77, 78, 84, 94, 100, 105, 106, 115, 124, 125, 126, 133, 140, 141, 145, 152, 156, 162, 164, 165, 170, 174, 183, 184, 188, 198, 202, 203, 206, 209, 212, 213, 218, 222, 231, 235, 236, 242, 243, 253, 256, 258, 259, 262, 264, 266, 270, 272, 278, 284
Offset: 1

Views

Author

Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999

Keywords

Examples

			C(C(C(C(C(C(1)))))) = C(C(C(C(C(4))))) = C(C(C(C(9)))) = C(C(C(16))) = C(C(26)) = C(39) = 56. So 56 is in the sequence. So 77 is in the sequence.
		

Crossrefs

Programs

  • Maple
    C := remove(isprime,[$4..1000]): seq(C[C[C[C[C[C[n]]]]]],n=1..100);

Formula

Let C(n) be the n-th composite number, with C(1)=4. Then these are numbers C(C(C(C(C(C(n)))))).

Extensions

More terms from Asher Auel Dec 15 2000

A076238 a(n) = A050436(n) mod A002808(n).

Original entry on oeis.org

0, 3, 1, 8, 8, 9, 8, 8, 7, 6, 8, 7, 6, 4, 5, 4, 3, 4, 4, 4, 3, 2, 2, 2, 1, 0, 0, 0, 43, 43, 44, 45, 45, 45, 47, 48, 50, 50, 50, 53, 53, 55, 55, 55, 55, 56, 56, 56, 56, 56, 58, 59, 60, 62, 63, 63, 65, 65, 65, 68, 68, 68, 68, 68, 69, 69, 69, 69, 70, 70, 72, 72, 73, 74, 74, 76, 78, 78
Offset: 1

Views

Author

Labos Elemer, Oct 08 2002

Keywords

Crossrefs

Formula

a(n)=Mod[ccc[n], c[n]]=Mod[A050436(n), A002808[n]]
Showing 1-10 of 11 results. Next