cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022547 Initial members of prime nonuplets (p, p+4, p+6, p+10, p+16, p+18, p+24, p+28, p+30).

Original entry on oeis.org

13, 113143, 626927443, 2335215973, 3447123283, 4086982633, 4422726013, 6318867403, 7093284043, 8541306853, 10998082213, 14005112893, 18869466373, 21528117883, 21843411823, 28156779793, 30303283243
Offset: 1

Views

Author

Keywords

Comments

All terms are congruent to 13 (modulo 30). - Matt C. Anderson, May 28 2015

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^8) | forall{p+r: r in [4,6,10,16,18,24,28,30] | IsPrime(p+r)}]; // Vincenzo Librandi, Sep 30 2015
    
  • Maple
    composite_small := proc (n::integer)
    description "determine if n has a prime factor less than 100";
    if igcd(2305567963945518424753102147331756070, n) = 1 then return false else return true end if;
    end proc:
    # A prime constellation pattern of length 9
    p := [0, 4, 6, 10, 16, 18, 24, 28, 30];
    # using isprime(m*n+o+p)
    o := [1273, 2263, 2683, 4003, 4633, 4993, 5893, 6883, 6943, 8623, 9613, 10243, 11563, 12823, 14863, 15133, 15553, 17863, 18433, 19753, 21163, 21793, 22483, 23053, 23113, 24103, 25783, 27733, 28723, 29983]:
    with(ArrayTools):
    os := Size(o, 2):
    m := 30030:
    loopstop := 10^11:
    loopstart := 0:
    print(13);
    for n from loopstart to loopstop do
    for a from 1 to os do
    counter := 0; wc := 0; wd := 0;
    while `and`(wd > -10, wd < 9) do
    wd := wd+1;
    if composite_small(m*n+o[a]+p[wd]) = false then wd := wd+1 else wd := -10 end if
    end do;
    if wd >= 9 then
    while `and`(counter >= 0, wc < 9) do
    wc := wc+1; if isprime(m*n+o[a]+p[wc]) then counter := counter+1 else counter := -1 end if;
    end do;
    end if;
    if counter = 9 then print(m*n+o[a]) end if;
    end do:
    end do:
    # Matt C. Anderson, Feb 01 2014
  • Mathematica
    Select[Prime[Range[200000]], Union[PrimeQ[# + {4, 6, 10, 16, 18, 24, 28, 30}]] == {True} &] (* Vincenzo Librandi, Sep 30 2015 *)
  • PARI
    forprime(p=2, 10^30, if (isprime(p+4) && isprime(p+6) && isprime(p+10) && isprime(p+16) && isprime(p+18) && isprime(p+24) && isprime(p+28) && isprime(p+30), print1(p", "))) \\ Altug Alkan, Sep 30 2015
  • Perl
    use ntheory ":all"; say for sieve_prime_cluster(1,1e11, 4,6,10,16,18,24,28,30); # Dana Jacobsen, Sep 30 2015