A022552 Numbers that are not the sum of 2 squares and a nonnegative cube.
7, 15, 22, 23, 39, 55, 70, 71, 78, 87, 94, 103, 111, 115, 119, 120, 139, 167, 211, 254, 263, 267, 279, 286, 302, 311, 312, 331, 335, 342, 391, 403, 435, 454, 455, 470, 475, 499, 518, 559, 590, 595, 598, 622, 643, 659, 691, 695, 715, 727, 771
Offset: 1
Keywords
Links
- R. J. Mathar, David A. Corneth, Table of n, a(n) for n = 1..434 (First 325 terms from R. J. Mathar, now terms < 6 * 10^7)
- Steven Finch, Pattern-Avoiding Permutations [Broken link?]
- Steven Finch, Pattern-Avoiding Permutations [Cached copy, with permission]
- W. Jagy and I. Kaplansky, Sums of Squares, Cubes and Higher Powers, Experimental Mathematics, vol. 4 (1995) pp. 169-173.
- Zhi-Wei Sun, New Conjectures on Representations of Integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), No.2, p. 110.
- Index entries for sequences related to sums of squares
Crossrefs
Complement of A022551.
Programs
-
Maple
isA022552 := proc(n) not isA022551(n) ; end proc: n := 1: for c from 0 do if isA022552(c) then printf("%d %d\n",n,c); n := n+1 ; end if; end do: # R. J. Mathar, Sep 02 2016
-
Mathematica
max = 10^6; Table[x^2 + y^2 + z^3, {x, 0, Sqrt[max]}, {y, x, Sqrt[max - x^2]}, {z, 0, (max - x^2 - y^2)^(1/3)}] // Flatten // Union // Select[#, # <= max&]& // Complement[Range[max], #]& (* Jean-François Alcover, Mar 23 2020 *)
Comments