cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022570 Expansion of Product_{m>=1} (1+x^m)^5.

Original entry on oeis.org

1, 5, 15, 40, 95, 206, 425, 835, 1575, 2880, 5121, 8885, 15095, 25165, 41240, 66562, 105945, 166480, 258560, 397235, 604162, 910325, 1359680, 2014235, 2961000, 4321283, 6263360, 9019555, 12908945, 18367805, 25990149, 36581200, 51228175, 71393555, 99037095, 136775685, 188091960
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000009.
Column k=5 of A286335.

Programs

  • Magma
    Coefficients(&*[(1+x^m)^5:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 26 2018
  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+q^m)^5,{m,1,nmax}],{q,0,nmax}],q] (* Vaclav Kotesovec, Mar 05 2015 *)
  • PARI
    x='x+O('x^51); Vec(prod(m=1, 50, (1 + x^m)^5)) \\ Indranil Ghosh, Apr 03 2017
    

Formula

a(n) ~ (5/3)^(1/4) * exp(Pi * sqrt(5*n/3)) / (16 * n^(3/4)). - Vaclav Kotesovec, Mar 05 2015
a(0) = 1, a(n) = (5/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 03 2017
G.f.: exp(5*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018