cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022575 Expansion of Product_{m>=1} (1+x^m)^10.

Original entry on oeis.org

1, 10, 55, 230, 815, 2562, 7360, 19700, 49755, 119700, 276278, 615130, 1326965, 2783360, 5693305, 11384326, 22299655, 42865280, 80983060, 150571340, 275840009, 498410280, 889056835, 1566896280, 2730474975, 4707724814, 8035618655, 13586253440, 22765030080, 37820087380
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=10 of A286335.
Cf. A000009.

Programs

  • Magma
    Coefficients(&*[(1+x^m)^10:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 26 2018
  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+q^m)^10,{m,1,nmax}],{q,0,nmax}],q] (* Vaclav Kotesovec, Mar 05 2015 *)
  • PARI
    m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^10)) \\ G. C. Greubel, Feb 26 2018
    

Formula

a(n) ~ (5/6)^(1/4) * exp(Pi * sqrt(10*n/3)) / (64 * n^(3/4)). - Vaclav Kotesovec, Mar 05 2015
a(0) = 1, a(n) = (10/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 03 2017