cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022577 Expansion of Product_{m>=1} (1+x^m)^12.

Original entry on oeis.org

1, 12, 78, 376, 1509, 5316, 16966, 50088, 138738, 364284, 913824, 2203368, 5130999, 11585208, 25444278, 54504160, 114133296, 234091152, 471062830, 931388232, 1811754522, 3471186596, 6556994502, 12222818640, 22502406793, 40944396120, 73680871326, 131211105208, 231355524048, 404110659732
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 12*x + 78*x^2 + 376*x^3 + 1509*x^4 + 5316*x^5 + 16966*x^6 + ...
G.f. = q + 12*q^3 + 78*q^5 + 376*q^7 + 1509*q^9 + 5316*q^11 + 16966*q^13 + ...
		

Crossrefs

Programs

  • Magma
    Coefficients(&*[(1+x^m)^12:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 25 2018
  • Maple
    N:= 50:
    G:= mul(1+x^m,m=1..N+1)^12:
    S:= series(G,x,N+1):
    seq(coeff(S,x,n),n=0..N); # Robert Israel, Feb 26 2018
  • Mathematica
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (m / 16 / q)^(1/2) / (1 - m), {q, 0, n}]]; (* Michael Somos, Jul 22 2011 *)
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (m / 16 / q) /(1-m)^(1/2), {q, 0, 2 n}]]; (* Michael Somos, Jul 22 2011 *)
    CoefficientList[QPochhammer[-1, q]^12/4096+O[q]^30, q] (* Jean-François Alcover, Nov 27 2015 *)
    With[{nmax=50}, CoefficientList[Series[Product[(1+q^k)^12, {k,1,nmax}], {q, 0, nmax}],q]] (* G. C. Greubel, Feb 25 2018 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, 1 + x^k, 1 + x * O(x^n))^12, n))}; /* Michael Somos, Jul 16 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) / eta(x + A))^12, n))}; /* Michael Somos, Jul 16 2005 */
    
  • PARI
    m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^12)) \\ G. C. Greubel, Feb 25 2018
    

Formula

G.f.: Product_{k>=1} ( 1 + x^k )^12.
Expansion of chi(-x)^-12 in powers of x where chi() is a Ramanujan theta function.
Expansion of k^2 / (16 * q * k') in powers of q^2. - Michael Somos, Jul 22 2011
Expansion of q^(-1/2) * (k/4) / (1 - k^2) in powers of q. - Michael Somos, Jul 16 2005
Expansion of q^(-1/2) * (eta(q^2) / eta(q))^12 in powers of q. - Michael Somos, Jul 16 2005
Euler transform of period 2 sequence [12, 0, ...]. - Michael Somos, Jul 16 2005
Given g.f. A(x), then B(q) = (q * A(q^2))^2 satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (4096*u*v + 48*u + 1)*v - u^2 . - Michael Somos, Jul 16 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 1/64 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A007249. - Michael Somos, Jul 22 2011
A124863(n) = (-1)^n * a(n). A007096(4*n + 2) = 8 * a(n). Convolution inverse of A007249.
a(n) ~ exp(2 * Pi * sqrt(n)) / (128 * n^(3/4)). - Vaclav Kotesovec, Mar 05 2015
a(0) = 1, a(n) = (12/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 03 2017

Extensions

More terms added by G. C. Greubel, Feb 25 2018