cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022581 Expansion of Product_{m>=1} (1+x^m)^16.

Original entry on oeis.org

1, 16, 136, 832, 4132, 17696, 67712, 236928, 770442, 2355824, 6834240, 18940480, 50424536, 129535968, 322288128, 779022208, 1834203955, 4216133616, 9479688992, 20884408704, 45148577668, 95902505120, 200394848512, 412350614016, 836328261438, 1673337795840, 3305364030464, 6450386567104, 12443955363352, 23745951691328, 44844655553536, 83856163515776, 155331420821337
Offset: 0

Views

Author

N. J. A. Sloane, Jun 14 1998

Keywords

Crossrefs

Column k=16 of A286335.

Programs

  • Magma
    Coefficients(&*[(1+x^m)^16:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 25 2018
  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+q^m)^16,{m,1,nmax}],{q,0,nmax}],q] (* Vaclav Kotesovec, Mar 05 2015 *)
    s = (QPochhammer[-1, q]/2)^16 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
  • PARI
    q='q+O('q^66); gf=(eta(q^2)/eta(q))^16; Vec(gf) \\ Joerg Arndt, Jul 06 2011
    
  • PARI
    m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^16)) \\ G. C. Greubel, Feb 25 2018
    

Formula

Expansion of q^(-2/3)(eta(q^2)/eta(q))^16 in powers of q. - Michael Somos, Jun 06 2005
Euler transform of period 2 sequence [16, 0, ...]. - Michael Somos, Jun 06 2005
G.f.: G(x) = (Prod_{k>0} 1+x^k)^16.
Let P(x) = prod(n>=1, (1+x^n)) (the g.f. for partitions into distinct parts, A000009). Then P(x^2)^8 + 16*x*P(x^2)^16*P(x)^8 = P(x)^16 (cf. A022581). - Joerg Arndt, Jul 12 2009
a(n) ~ exp(4 * Pi * sqrt(n/3)) / (256 * sqrt(2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Mar 05 2015
a(0) = 1, a(n) = (16/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 03 2017