cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022630 Expansion of Product_{m>=1} (1 + m*q^m)^2.

Original entry on oeis.org

1, 2, 5, 14, 28, 64, 133, 266, 513, 1000, 1873, 3420, 6257, 11078, 19585, 34192, 58714, 99870, 168858, 281666, 467082, 768994, 1253038, 2030658, 3269551, 5227868, 8304467, 13133256, 20630535, 32250274, 50181624, 77653530, 119634925, 183532470, 280245365
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=2 of A297321.

Programs

  • Magma
    Coefficients(&*[(1+m*x^m)^2:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 16 2018
  • Mathematica
    nn=34; CoefficientList [Series[ Product[(1 + m*q^m)^2, {m, nn}], {q, 0, nn}],q] (* Robert G. Wilson v, Feb 08 2018 *)
  • PARI
    m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+n*q^n)^2)) \\ G. C. Greubel, Feb 16 2018
    

Formula

Self-convolution of A022629. - Alois P. Heinz, Dec 28 2017
G.f.: exp(2*Sum_{j>=1} Sum_{k>=1} (-1)^(j+1)*k^j*x^(j*k)/j). - Ilya Gutkovskiy, Feb 08 2018