cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022631 Expansion of Product_{m>=1} (1 + m*q^m)^3.

Original entry on oeis.org

1, 3, 9, 28, 69, 174, 413, 933, 2046, 4391, 9168, 18675, 37522, 73725, 142893, 273159, 514512, 957666, 1762837, 3208884, 5783727, 10330732, 18280590, 32086827, 55880614, 96579240, 165733335, 282513246, 478419366, 805196022, 1347288750, 2241377166, 3708721887
Offset: 0

Views

Author

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -3, g(n) = -n. - Seiichi Manyama, Dec 29 2017

Crossrefs

Column k=3 of A297321.

Programs

  • Magma
    Coefficients(&*[(1+m*x^m)^3:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 16 2018
  • Mathematica
    With[{nmax=34}, CoefficientList[Series[Product[(1+k*q^k)^3, {k,1,nmax}], {q, 0, nmax}],q]] (* G. C. Greubel, Feb 16 2018 *)
  • PARI
    m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+n*q^n)^3)) \\ G. C. Greubel, Feb 16 2018
    

Formula

G.f.: exp(3*Sum_{j>=1} Sum_{k>=1} (-1)^(j+1)*k^j*x^(j*k)/j). - Ilya Gutkovskiy, Feb 08 2018