cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022634 Expansion of Product_{m>=1} (1 + m*q^m)^6.

Original entry on oeis.org

1, 6, 27, 110, 387, 1266, 3896, 11340, 31629, 84992, 221028, 558450, 1375615, 3310764, 7803069, 18044374, 40998078, 91653990, 201842383, 438312534, 939439674, 1988944070, 4162521165, 8617025112, 17655688602, 35823617658, 72015578091, 143499705550, 283544586489, 555779906772
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=6 of A297321.

Programs

  • Magma
    Coefficients(&*[(1+m*x^m)^6:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 17 2018
  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[Product[(1 + k*q^k)^6, {k, 1, nmax}], {q, 0, nmax}], q]] (* G. C. Greubel, Feb 17 2018 *)
  • PARI
    m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+n*q^n)^6)) \\ G. C. Greubel, Feb 17 2018
    

Formula

G.f.: exp(6*Sum_{j>=1} Sum_{k>=1} (-1)^(j+1)*k^j*x^(j*k)/j). - Ilya Gutkovskiy, Feb 08 2018