A022682 Expansion of Product_{m>=1} (1-m*q^m)^22.
1, -22, 187, -638, -561, 10582, -20460, -44132, 157311, 154132, -468666, -1959718, 2247421, 12556104, -8229859, -41049558, -43660639, 121417780, 408706870, -100429384, -1145215709, -2659879552, 853739235, 13377528824
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
Coefficients(&*[(1-m*x^m)^22:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Jul 19 2018
-
Maple
seq(coeff(series(mul((1-m*x^m)^22,m=1..n), x,n+1),x,n),n=0..30); # Muniru A Asiru, Jul 19 2018
-
Mathematica
With[{nmax = 50}, CoefficientList[Series[Product[(1 - k*q^k)^22, {k, 1, nmax}], {q, 0, nmax}], q]] (* G. C. Greubel, Jul 19 2018 *)
-
PARI
m=50; q='q+O('q^m); Vec(prod(n=1,m,(1-n*q^n)^22)) \\ G. C. Greubel, Jul 19 2018