cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022818 Square array read by antidiagonals: A(n,k) = number of terms in the n-th derivative of a function composed with itself k times (n, k >= 1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 5, 1, 1, 5, 10, 13, 7, 1, 1, 6, 15, 26, 23, 11, 1, 1, 7, 21, 45, 55, 44, 15, 1, 1, 8, 28, 71, 110, 121, 74, 22, 1, 1, 9, 36, 105, 196, 271, 237, 129, 30, 1, 1, 10, 45, 148, 322, 532, 599, 468, 210, 42, 1, 1, 11, 55, 201, 498, 952, 1301, 1309, 867, 345, 56, 1
Offset: 1

Views

Author

Keywords

Examples

			Square array A(n,k) (with rows n >= 1 and columns k >= 1) begins:
  1,  1,   1,   1,    1,    1,    1,     1, ...
  1,  2,   3,   4,    5,    6,    7,     8, ...
  1,  3,   6,  10,   15,   21,   28,    36, ...
  1,  5,  13,  26,   45,   71,  105,   148, ...
  1,  7,  23,  55,  110,  196,  322,   498, ...
  1, 11,  44, 121,  271,  532,  952,  1590, ...
  1, 15,  74, 237,  599, 1301, 2541,  4586, ...
  1, 22, 129, 468, 1309, 3101, 6539, 12644, ...
  ...
		

References

  • Winston C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.

Crossrefs

Main diagonal gives: A192435.

Programs

  • Maple
    A:= proc(n, k) option remember;
          `if`(k=1, 1, add(b(n, n, i)*A(i, k-1), i=0..n))
        end:
    b:= proc(n, i, k) option remember; `if`(nAlois P. Heinz, Aug 18 2012
    # second Maple program:
    b:= proc(n, i, l, k) option remember; `if`(k=0,
          `if`(n<2, 1, 0), `if`(n=0 or i=1, b(l+n$2, 0, k-1),
             b(n, i-1, l, k) +b(n-i, min(n-i, i), l+1, k)))
        end:
    A:= (n, k)->  b(n$2, 0, k):
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);  # Alois P. Heinz, Jul 19 2018
  • Mathematica
    a[n_, k_] := a[n, k] = If[k == 1, 1, Sum[b[n, n, i]*a[i, k-1], {i, 0, n}]]; b[n_, i_, k_] := b[n, i, k] = If[n < k, 0, If[n == 0, 1, If[i < 1, 0, Sum[b[n-i*j, i-1, k-j], {j, 0, Min[n/i, k]}]]]]; Table[Table[a[n, 1+d-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Jan 14 2014, translated from Alois P. Heinz's Maple code *)
  • PARI
    P(n, k) = #partitions(n-k, k); /* A008284 */
    tabl(nn) = {M = matrix(nn, nn, n, k, 0); for(n=1, nn, M[n, 1] = 1; ); for(n=1, nn, for(k=2, nn, M[n, k] = sum(s=1, n, P(n, s)*M[s, k-1]))); for (n=1, nn, for (k=1, nn, print1(M[n, k], ", "); ); print(); ); } \\ Petros Hadjicostas, May 30 2020

Formula

From Petros Hadjicostas, May 30 2020: (Start)
A(n,k) = Sum_{s=1..n} A008284(n,s)*A(s,k-1) for n >= 1 and k >= 2 with A(n,1) = 1 for n >= 1.
A(n,k) = Sum_{s=1..n} binomial(k,s-1)*A081719(n-1,s-1) for n, k >= 1. (End)

Extensions

Edited by Alois P. Heinz, Aug 18 2012